

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

DESIGN, IMPLEMENTATION AND TESTING OF A
COMMON DATA MODEL SUPPORTING AUTONOMOUS
VEHICLE COMPATIBILITY AND INTEROPERABILITY

by

Duane T. Davis

September 2006

 Dissertation Supervisor: Don Brutzman

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE: Design, Implementation and Testing of a Common
Data Model Supporting Autonomous Vehicle Compatibility and Interoperability
6. AUTHOR: Duane T. Davis

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
 Current autonomous vehicle interoperability is limited by vehicle-specific data formats and support systems. Until a
standardized approach to autonomous vehicle command and control is adopted, true interoperability will remain elusive. This
work explores the applicability of a data model supporting arbitrary vehicles using the Extensible Markup Language (XML).
An exemplar, the Autonomous Vehicle Command Language (AVCL), encapsulates behavior-scripted mission definition, goal-
based mission definition, inter-vehicle communication, and mission results.
 Broad applicability is obtained through the development of a behavior set capturing arbitrary vehicle activities, and
automated conversion of AVCL to and from vehicle-specific formats. The former uses task-level behaviors suitable for
mission scripting and goal decomposition. Translations use the Extensible Stylesheet Language for Transformation, XML data
binding, context-free language parsing, and artificial intelligence machine learning and search techniques. Translation
capability is demonstrated through mappings of AVCL to and from multiple vehicle-specific formats.
 A final demonstration of the power of a common autonomous vehicle data model is provided by the implementation of a
hybrid control architecture. The model’s vehicle-independence and the ability to generate vehicle-specific data are leveraged
in the design of an architecture that provides increased autonomy by augmenting a vehicle’s existing controller. The utility of
this architecture is demonstrated through implementation on the Naval Postgraduate School’s ARIES Unmanned Underwater
Vehicle.

15. NUMBER OF
PAGES

359

14. SUBJECT TERMS AUV, UUV, USV, UAV, robotics, autonomy, control architecture, hybrid
control, autonomous vehicle behaviors, state-based control, data model, ontology, XML, XSLT, XML
data binding, context-free grammar, data translation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

DESIGN, IMPLEMENTATION AND TESTING OF A
COMMON DATA MODEL SUPPORTING AUTONOMOUS VEHICLE

COMPATIBILITY AND INTEROPERABILITY

Duane T. Davis
Commander, United States Navy

B.S., Virginia Polytechnic Institute and State University, 1989
M.S., Naval Postgraduate School, 1996

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: __
Duane T. Davis

Approved by:

Don Brutzman
Associate Professor of Applied Science
Dissertation Supervisor and
Dissertation Committee Chair

______________________ _______________________
Neil Rowe Robert McGhee
Professor of Computer Science Professor of Computer Science

______________________ _______________________
Christian Darken Anthony Healey
Associate Professor of Distinguished Professor of
Computer Science Mechanical Engineering

Approved by: __
Peter Denning, Chair, Department of Computer Science

Approved by: __

Julie Filizetti, Associate Provost for Academic Affairs

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Current autonomous vehicle interoperability is limited by vehicle-specific data

formats and support systems. Until a standardized approach to autonomous vehicle

command and control is adopted, true interoperability will remain elusive. This work

explores the applicability of a data model supporting arbitrary vehicles using the

Extensible Markup Language (XML). An exemplar, the Autonomous Vehicle Command

Language (AVCL), encapsulates behavior-scripted mission definition, goal-based

mission definition, inter-vehicle communication, and mission results.

Broad applicability is obtained through the development of a behavior set

capturing arbitrary vehicle activities, and automated conversion of AVCL to and from

vehicle-specific formats. The former uses task-level behaviors suitable for mission

scripting and goal decomposition. Translations use the Extensible Stylesheet Language

for Transformation, XML data binding, context-free language parsing, and artificial

intelligence machine learning and search techniques. Translation capability is

demonstrated through mappings of AVCL to and from multiple vehicle-specific formats.

A final demonstration of the power of a common autonomous vehicle data model

is provided by the implementation of a hybrid control architecture. The model’s vehicle-

independence and the ability to generate vehicle-specific data are leveraged in the design

of an architecture that provides increased autonomy by augmenting a vehicle’s existing

controller. The utility of this architecture is demonstrated through implementation on the

Naval Postgraduate School ARIES unmanned underwater vehicle.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION, MOTIVATION, AND OBJECTIVES1
A. DISSERTATION STATEMENT ...1
B. MOTIVATION AND OVERVIEW ...2

1. The Multiple Autonomous Vehicle Inter-Operability
Requirement ...2

2. A Common Data Model as a Coordinated Operations Enabler......5
3. Data Model Use for Cross-Application Data Sharing7

C. OBJECTIVES ..8
D. DISSERTATION ORGANIZATION ..10

II. REVIEW OF RELATED WORK..13
A. INTRODUCTION..13
B. AUTONOMOUS VEHICLE CONTROL PARADIGMS..........................14

1. Scripted Control...14
2. Hierarchical Control..16
3. Behavioral Control...18
4. Hybrid Control...21
5. The Rational Behavior Model (RBM)..23

C. SYSTEM AND PLATFORM-INDEPENDENT LANGUAGES...............24
1. Common Control Language (CCL) ...24
2. Compact Control Language (C2L)...27
3. Joint Architecture for Unmanned Systems (JAUS)........................30

a. JAUS Overview ...30
b. JAUS System Topology...30
c. JAUS Components ..31
d. JAUS Messaging...34
e. JAUS Summary...38

4. Joint Command Control and Communications Information
Exchange Data Model (JC3IEDM) ..38

D. SUMMARY ..42
III. EXTENSIBLE MARKUP LANGUAGE (XML) AND APPLICABLE XML

TECHNOLOGIES...45
A. INTRODUCTION—WHY XML? ...45
B. XML OVERVIEW...46
C. XML SCHEMA AND DOCUMENT VALIDATION49
D. XML PARSING ...52

1. Introduction..52
2. The Document Object Model (DOM) ..53
3. The Simple Application Programmer’s Interface (API) for

XML Parsing (SAX) ..54
E. XML DATA BINDING ...56
F. EXTENSIBLE STYLESHEET LANGUAGE FOR

TRANSFORMATION (XSLT) ..60
G. BINARY XML AND XML COMPRESSION...62

viii

H. SUMMARY ..67
IV. AUTONOMOUS VEHICLE COMMON DATA MODEL DEVELOPMENT ...69

A. DATA MODELS VERSUS ONTOLOGIES...69
B. AUTONOMOUS VEHICLE DATA MODEL DEVELOPMENT............72

1. Overview ...72
2. Data Types and Conventions ..73

a. Units and Conventions..73
b. Simple Data Types...75

3. Task-Level Behaviors ..79
4. Declarative Task Specification..89
5. Mission Results...93
6. Inter-Vehicle Communications...93

C. SUMMARY ..98
V. VEHICLE-SPECIFIC LANGUAGE CONVERSIONS.......................................101

A. INTRODUCTION..101
B. RELATED MISSION PROGRAMMING LANGUAGES101

1. The Phoenix UUV Command and Control....................................101
2. ARIES UUV Mission Specification ..103
3. Seahorse UUV Task Set...105
4. The REMUS UUV Objective Set ..106

C. TEXT-BASED VEHICLE-SPECIFIC DATA FORMATS108
1. Generation of Vehicle-Specific Documents from Data-Model-

Compliant XML...108
a. Introduction...108
b. Conversion of AVCL for the Phoenix UUV........................109
c. Conversion of AVCL for the ARIES UUV...........................112
d. Conversion of AVCL for the Seahorse UUV116
e. Conversion of AVCL for the REMUS UUV122

2. Generation of Data-Model-Compliant XML from Vehicle-
Specific Text Documents ...127
a. Context-Free-Grammar-Based Translation127
b. Conversion of Phoenix UUV Command Files to AVCL132
c. Conversion of ARIES UUV Command Files to AVCL134
d. Conversion of Seahorse UUV Command Files to AVCL....134
e. Conversion of REMUS UUV Command Files to AVCL.....138

D. BINARY DATA FORMATS ..143
1. Overview ...143
2. JAUS-XML Overview ...144
3. Conversion of JAUS-XML to AVCL ...147
4. Conversion of AVCL to JAUS-XML to AVCL.............................151

E. SUMMARY ..154
VI. OFF-VEHICLE DECLARATIVE MISSION APPLICATION..........................157

A. INTRODUCTION..157
B. GENERATION OF TASK-LEVEL BEHAVIOR SCRIPTS FROM

DECLARATIVE SPECIFICATIONS...157
1. Overview ...157

ix

2. Decision-Tree-Based Generation of Task-Level Behavior
Scripts..160

3. Use of Planner-Generated Search Pattern Scripts166
a. Overview ..166
b. A-Star (A*) Based Search-Pattern Development.................169
c. Combined Best-First / A* Based Search-Pattern

Development ..171
d. Use of Hill-Climbing Search for Area Search Pattern

Generation...173
e. Search Pattern Development Using Iterative Improvement

of a Traveling Salesman Problem Solution174
f. Iterative Improvement of Traveling Salesman Problem

Search Patterns using Simulated Annealing176
g. Comparing Automated Search Pattern Generation

Techniques ..178
4. Global Path Planning in Script Generation...................................181

C. INFERENCE OF DECLARATIVE MISSION GOALS FROM
TASK-LEVEL SCRIPTS..183
1. Overview ...183
2. Mission Goal-Type Inference using Case-Based Reasoning185
3. Mission Goal-Type Inference using Naïve Bayes Reasoning187
4. Comparing the Performance of the Case-Based Reasoning and

Naïve Bayes Script Classifiers...191
D. SUMMARY ..192

VII. THE EXTENDED RATIONAL BEHAVIOR MODEL (ERBM)
DEVELOPMENT AND IMPLEMENTATION ...195
A. INTRODUCTION..195
B. THE EXTENDED RATIONAL BEHAVIOR MODEL (ERBM)...........196

1. Overview ...196
2. The Strategic Level ..198
3. The Tactical Level..201
4. Exemplar ERBM Implementation ...203

a. Strategic Level Implementation..203
b. Tactical Level Implementation ...209

C. RBM STRATEGIC AND TACTICAL LEVEL IMPLEMENTATION
ON THE ARIES UUV ...210
1. The Existing ARIES Control Architecture....................................210
2. Incorporation of ERBM onto the Existing ARIES Control

Architecture..211
D. SUMMARY ..215

VIII. EXPERIMENTATION ...217
A. INTRODUCTION..217
B. MISSION SIMULATION...217

1. Overview ...217
2. Physically-Based AUVW Models..219

C. EXPERIMENTAL RESULTS..223

x

1. AVCL Translations..223
2. ERBM Testing..226

a. Overview ..226
b. USV and UAV ERBM Results..227
c. UUV ERBM Results..229

D. SUMMARY ..238
IX. CONCLUSIONS AND RECOMMENDATIONS...241

A. RESEARCH CONCLUSIONS...241
B. RECOMMENDATIONS FOR FUTURE WORK....................................245

APPENDIX A: THE AUTONOMOUS VEHICLE COMMAND LANGUAGE
(AVCL)..253
A. INTRODUCTION..253
B. SIMPLE DATA TYPES..253

1. Numerical Data Types ...253
2. String Enumerations..254

C. REUSABLE COMPLEX DATA TYPES ..257
D. TOP-LEVEL DOCUMENT STRUCTURE..264
E. MISSION DEFINITION...268

1. Task-Level Behavior Scripts...268
a. Overview ..268
b. UUV Behaviors ...268
c. UGV Behaviors ...278
d. USV Behaviors ..279
e. UAV Behaviors..280

2. Declarative Missions ..282
a. Overview ..282
b. Route and Area Definition..283
c. Goal Definition..285

F. MISSION RESULTS...291
1. Overview ...291
2. Discrete Event Logging..291
3. Sampled Continuous Data...293

G. INTER-VEHICLE MESSAGING..295
1. Overview ...295
2. The AVCL Message Header ...297
3. The AVCL Message Body ...297

APPENDIX B: THE AUTONOMOUS AND UNMANNED VEHICLE
WORKBENCH (AUVW)..301
A. INTRODUCTION..301
B. SCRIPTED MISSION PLANNING AND EDITING...............................301
C. DECLARATIVE MISSION PLANNING AND EDITING306
D. MISSION REHEARSAL ..309

1. Simulation in the AUVW ..309
2. Environmental Modeling...309
3. Visualization ...309
4. The X3D Scene Access Interface ..311

xi

5. Distributed Interactive Simulation (DIS)312
E. VEHICLE SUPPORT ...313

1. Data Format Conversion...313
2. Communications ..314

F. AVAILABILITY AND DEVELOPMENT..315
LIST OF REFERENCES..317
INITIAL DISTRIBUTION LIST ...329

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF FIGURES

Figure 1.1. Projected Evolution of the Level of Autonomy in Unmanned Vehicles
from 1990 to 2020 (From: JRP, 04)...4

Figure 2.1. A Scripted Phoenix Unmanned Underwater Vehicle (UUV) Mission in the
Behavior Scripting Language described in (Brutzman, 94) and (Davis, 96)...15

Figure 2.2. A Typical Hierarchical Architecture for Autonomous Vehicle Control..........17
Figure 2.3. A Distributed Architecture for Mobile Navigation (DAMN) Arbiter for

Autonomous Vehicle Heading Control Behaviors (After: Rosenblatt, 97)20
Figure 2.4. Behavioral Autonomous Vehicle Control as Implemented in the

Pennsylvania State University Applied Research Laboratory Intelligent
Control Architecture (After: Lewis and Weiss, 04)..20

Figure 2.5. A Three-Level Hybrid Architecture for Autonomous Vehicle Control...........22
Figure 2.6. The Rational Behavior Model (RBM) Architecture that uses the Control

Paradigm of Naval Vessels as its Basis (After: Byrnes, 93)...........................24
Figure 2.7. Common Control Language (CCL) Behavior Classes and Example

Instances (From: Duarte, et al., 04)...25
Figure 2.8. The CCL Runtime Environment (After: Duarte, et al., 04)26
Figure 2.9. A Compact Control Language (C2L) Message Containing Computer

Aided Detection / Computer Aided Classification Mine Countermeasures
Data (After: Stokey, 04)..29

Figure 2.10. Joint Architecture for Unmanned Systems (JAUS) Topology for
Unmanned System Design and Implementation (From: JAUS, 04-2)31

Figure 2.11. The JAUS Communicator Component Functionality at the Architecture’s
Subsystem Level (From: JAUS, 04-2)..34

Figure 2.12. JAUS Message Header Layout and Field Descriptions (From: JAUS, 04-
3) ..37

Figure 2.13. A Diagram of the Joint Command Control and Communications
Information Exchange Data Model (JC3IEDM) Conceptual Model Object
and Object Type (From: MIP, 03-2) ...40

Figure 2.14. A Diagram of the JC3IEDM Location Conceptual Model (From: MIP, 03-
2) ..41

Figure 2.15. A Diagram of the JC3IEDM Action Conceptual Model (From: MIP, 03-2)..42
Figure 3.1. An Unmanned Underwater Vehicle (UUV) Waypoint Encoded in XML

using Element Values to Capture Data Values ..48
Figure 3.2. An Alternative XML Encoding of a UUV Waypoint with Data Values

Expressed using Attributes ..49
Figure 3.3. A Graphical Depiction of an XML Document Object Model (DOM) Tree

Corresponding to a Simple XML Document Specifying a UUV Waypoint ...54
Figure 3.4. A Graphical Depiction of the Interactions Between an XML Data Binding

Utility, the XML Schema, the Binder Products, XML Documents and a
Client Application..58

xiv

Figure 3.5. A Comparison of Fast Infoset and XML Schema-Based Binary
Compression (XSBC) of XML Encoded Joint JAUS Messages to the
Standard Binary Encodings and Uncompressed XML65

Figure 3.6. A Comparison of Fast Infoset and XSBC Compression of Autonomous
Vehicle Command Language (AVCL) Mission Results Files.........................66

Figure 4.1. The Ontology Spectrum (Weak to Strong Semantics) Demonstrating the
Relationship between Ontology Types and Expressive Power
(From: Daconta, et al., 02) ..71

Figure 4.2. A Finite State Machine Representing the Goals and Mission Flow of an
Exemplar Declarative UUV Agenda ...90

Figure 5.1. An Example Seahorse UUV Station Keeping Order (After: NAVO, 04)106
Figure 5.2. An AVCL Waypoint Behavior and an Equivalent Phoenix UUV Behavior

Sequence Automatically Generated from an XSLT Stylesheet.....................111
Figure 5.3. Algorithm for Achieving Mutable Variables in XSLT using Template

Parameters and Explicitly Controlled Iteration..114
Figure 5.4. Data Mappings from AVCL Task-Level Behaviors to ARIES UUV

Waypoint Fields ...115
Figure 5.5. An AVCL Task-Level Behavior Sequence Ordering a UUV to Proceed to

a Waypoint, Surface, and Return to the Previous Waypoint and Depth........117
Figure 5.6. An XSLT-Generated Seahorse UUV Task Sequence Equivalent to the

Task-Level Behavior Sequence of Figure 5.5..118
Figure 5.7. Data Mappings from AVCL Task-Level Behaviors to the Seahorse UUV

Waypoint Order ...120
Figure 5.8. Mappings from AVCL Task-Level Behaviors to Seahorse GPS Fix,

Surface Comms and Station Keep Orders ..121
Figure 5.9. Mappings from AVCL Task-Level Behaviors to the Seahorse Rendezvous

Order ..121
Figure 5.10. AVCL Data Mapping to the REMUS UUV Set-Position and Surface

Objectives ..125
Figure 5.11. AVCL Data Mapping to the REMUS UUV Navigate and Dead-Reckon

Objectives ..126
Figure 5.12. AVCL Data Mapping to the REMUS UUV Transponder-Home Objective .126
Figure 5.13. Context-Free Grammar Production Rules for Generating a Phoenix UUV

Waypoint Behavior ..129
Figure 5.14. A Parse Tree Corresponding to a Single Phoenix UUV Waypoint Behavior

Based on the Production Rules of Figure 5.13 (After: Davis, 05).................129
Figure 5.15. The Cocke-Younger-Kasami Algorithm for Parsing Chomsky-Normal-

Form Context-Free Language Instances (After: Hopcroft, et al., 01)............130
Figure 5.16. An AVCL Task-Level Behavior Sequence Corresponding to Two ARIES

UUV Waypoints...135
Figure 5.17. Data Mapping from a Seahorse UUV Waypoint Navigation Order to

AVCL Task-Level Behaviors ..136
Figure 5.18. Data Mapping from a Seahorse UUV Station Keep Order to AVCL

Task-Level Behaviors ..137
Figure 5.19. Data Mapping from a Seahorse UUV Surface Comms Order to AVCL

Task-Level Behaviors ..137

xv

Figure 5.20. Data Mapping from a Seahorse UUV GPS Fix Order to AVCL Task-Level
Behaviors ...138

Figure 5.21. Data Mapping from a Seahorse UUV Rendezvous Order to AVCL
Task-Level Behaviors ..138

Figure 5.22. Data Mapping from a REMUS UUV Location Descriptor Defining the
Position of a Navigation Transponder to AVCL MetaCommand Behaviors 140

Figure 5.23. Data Mapping from a REMUS UUV Navigate, Dead Reckon or
Transponder Home Objective to AVCL Task-Level Behaviors....................141

Figure 5.24. Data Mapping from a REMUS UUV Navigate Rows Objective to AVCL
Task-Level Behaviors ..142

Figure 5.25. Data Mapping from REMUS UUV Compass Calibration and Surface
Objectives to AVCL Task-Level ...143

Figure 5.26. XML-Based Translation between JAUS and AVCL.....................................145
Figure 5.27. An XML Encoding of a JAUS Message Header ...146
Figure 5.28. Mapping of a JAUS-XML Message List to an AVCL Message List or

Task-Level Behavior Script ...148
Figure 5.29. Data Mapping from a JAUS Set Global Vector Message to AVCL Task-

Level Behaviors ...150
Figure 5.30. Data Mapping from a JAUS Set Wrench Effort Message to AVCL

Task-Level Behaviors ..151
Figure 6.1. An AVCL Goal Calling for the Search of a Rectangular Area with a

Required Probability of Detection of 0.8...161
Figure 6.2. A Parallel-Track Search Pattern that can be Executed by a UAV to

Accomplish the AVCL Goal Specified in Figure 6.1162
Figure 6.3. A Decision Tree for Determining an Appropriate Search Pattern Based on

the Characteristics of the Vehicle, Operating Area, and Search Type...........164
Figure 6.4. Preplanned Search Patterns Available for use in Accomplishing AVCL

Goals (After: IMO and ICAO, 98)..164
Figure 6.5. An Expanding-Square Search Pattern for use by a USV in Accomplishing

a Point-Focused Search of a Circular Operating Area...................................166
Figure 6.6. An Irregularly Shaped Operating Area and Overlaid Parallel-Track Search

Pattern that has been Adjusted to Avoid Out-Of-Area Excursions167
Figure 6.7. A Decision Tree for Determining an Appropriate Area-Search Pattern that

Relies on Artificial-Intelligence Planners for Irregularly Shaped Areas168
Figure 6.8. A Search Pattern for an Irregularly Shaped Operating Area Generated by

an A-Star (A*) Search Biased Towards Patterns with Fewer Waypoints170
Figure 6.9. A Search Pattern for an Irregularly Shaped Operating Area Generated

using a Combined Best-First / A* Search..172
Figure 6.10. A Search Pattern for an Irregularly Shaped Operating Area Generated

using a Hill-Climbing Search that does not Allow Backtracking..................174
Figure 6.11. Progressive Improvement of a Traveling Salesman Problem Solution to

Generate Efficient Search Patterns for Arbitrarily Shaped Areas175
Figure 6.12. A Search Pattern for an Irregularly Shaped Operating Area Generated

using the Traveling-Salesman-Problem-Based Algorithm of Figure 6.11176
Figure 6.13. An Irregular Area Search Pattern Derived using Simulated-Annealing-

Based Iterative Improvement of a Traveling Salesman Problem Solution....178

xvi

Figure 6.14. A Comparison of Absolute Track Length of Planner-Generated and Area-
Adjusted Preplanned Search Patterns for Concave-Polygonal Areas............179

Figure 6.15. A Comparison of Normalized Track Length of Planner-Generated and
Area-Adjusted Preplanned Search Patterns for Concave-Polygonal Areas...180

Figure 6.16. Comparison of Run Times for Search Pattern Planners180
Figure 6.17. A Global Path-Planning Example using a Best-First Search to Discover

the Shortest Path from Start (S) to Goal (G) that Bypasses all Avoid Areas.183
Figure 6.18. Properties used to Classify AVCL Task-Level Behavior Scripts using

Case-Based Reasoning...186
Figure 6.19. Boolean Characteristics used for Naïve Bayes Classification of AVCL

Task-Level Behavior Scripts..190
Figure 6.20. A Comparison of Individual Goal-Type Performance of the Case-Based

Reasoning and Naïve Bayes Task-Level Behavior Script Classifiers191
Figure 7.1. The Extended Rational Behavior Model (ERBM) Data and Command

Flow for a Typical On-Vehicle Implementation..196
Figure 7.2. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use

in the Accomplishment of AVCL Environmental Sampling Goals...............204
Figure 7.3. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use

in the Accomplishment of AVCL IlluminateArea and Jam Goals205
Figure 7.4. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level

Use in the Accomplishment of AVCL MonitorTransmissions Goals205
Figure 7.5. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use

in the Accomplishment of AVCL Patrol Goals ...206
Figure 7.6. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use

in the Accomplishment of AVCL Search Goals..206
Figure 7.7. Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL MarkTarget Goals..207
Figure 7.8. Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL Decontaminate Goals...................................208
Figure 7.9. Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL Attack and Demolish Goals.........................208
Figure 7.10. The NPS ARIES UUV Configuration (After: Marco, 01)............................211
Figure 7.11. The ERBM Controller Implementation on the ARIES UUV213
Figure 8.1. The RQ-1 Predator UAV ...223
Figure 8.2. An AVCL UUV Waypoint Behavior...224
Figure 8.3. Translation of the AVCL Behavior of Figure 8.2 for the Seahorse UUV224
Figure 8.4. Translation of the AVCL Behavior of Figure 8.2 for the REMUS UUV......225
Figure 8.5. Simulated Mission Results for an ERBM-Controlled USV Executing a

Declarative AVCL Agenda with Three Goals and Three Avoid Areas.........228
Figure 8.6. Simulated Mission Results for an ERBM-Controlled UAV Executing a

Declarative AVCL Agenda with Three Goals and Three Avoid Areas.........229
Figure 8.7. ARIES UUV Virtual Environment Results for an ERBM-Controlled

Mission with a Single Reposition Goal and No Avoid Areas230
Figure 8.8. ARIES UUV In-Water Results from Monterey Bay (16 June 2006) of the

Reposition Mission of Figure 8.7...231

xvii

Figure 8.9. ARIES UUV Virtual Environment Results for an ERBM-Controlled
Mission with a Single Reposition Goal and Multiple Avoid Areas...............232

Figure 8.10. ARIES UUV Simulation Results for an ERBM-Controlled Mission with a
Single MonitorTransmissions Goal and a Single Avoid Area.......................233

Figure 8.11. ARIES UUV Simulated Results for an ERBM-Controlled Mission with a
Single Area-Search Goal with Potentially Multiple Targets234

Figure 8.12. ARIES UUV In-Water Results from Monterey Bay (25 July 2006) of the
Multi-Target Area-Search Mission of Figure 8.12 ..235

Figure 8.13. ARIES UUV Simulated Results for an ERBM-Controlled Mission with a
Single Area-Search Goal for a Single Target ..236

Figure 8.14. ARIES UUV In-Water Results from Monterey Bay (25 July 2006) of the
Single-Target Area-Search Mission of Figure 8.14.......................................236

Figure 8.15. ARIES UUV Simulated Results for an ERBM-Controlled Mission with a
Successfully Executed Area-Search and Patrol Goals...................................237

Figure 8.16. ARIES UUV Simulated Results for an ERBM-Controlled Mission with an
Unsuccessful Area-Search Goal and a Successful MonitorTransmissions
Goal..238

Figure 9.1. Mechanisms Supporting Autonomous Vehicle Tasking Form
Interchangeability and Automated Translation between Forms244

Figure A.1. AVCL Complex Types and Groups for Representing Geographic Position .259
Figure A.2. The AVCL circleElementType for Specifying a Geographic Area as a

Circle..260
Figure A.3. The AVCL polygonElementType for Specifying a Geographic Area as an

Arbitrary Polygon ..261
Figure A.4. The AVCL rectangleElementType for Specifying a Geographic Area as a

Rectangle..261
Figure A.5. Structure of the AVCL Root Element for Mission Definition and Mission

Results Documents...264
Figure A.6. The Content Model of the AVCL “MissionPreparation” Element................267
Figure A.7. AVCL Document Root Elements for Inter-Vehicle Message Passing267
Figure A.8. The AVCL UUV-Specific Composite Waypoint Task-Level Behavior269
Figure A.9. AVCL Elements for Parametrically Specifying a Pre-Defined Waypoint

Pattern ..270
Figure A.10. An AVCL Element for Initiating a UUV Hover Behavior272
Figure A.11. AVCL Element for Initiating a UUV Loiter Behavior273
Figure A.12. An AVCL Element for Initiating a UUV Waypoint Behavior279
Figure A.13. An AVCL Element for Initiating a UAV Composite Waypoint Behavior....281
Figure A.14. AVCL Elements for Initiating UAV Loiter and Waypoint Behaviors281
Figure A.15. An AVCL Element for Defining a Declarative Agenda Consisting of

High-Level Goals that are to be Accomplished over the Course of a
Mission...284

Figure A.16. AVCL Complex Types Used to Define Routes and Areas that can Include
Altitude or Depth Components ..284

Figure A.17. An AVCL Element for Defining Individual Goals of a Declarative Agenda
Mission...286

xviii

Figure A.18. AVCL Element Content Models for Specifying Goals of a Declarative
Agenda Mission ...287

Figure A.19. AVCL Elements Used for Logging Asynchronous Discrete Events292
Figure A.20. An AVCL Element for Recording Vehicle Telemetry and Control Orders ..293
Figure A.21. AVCL Elements for Sampled Vehicle Telemetry ...294
Figure A.22. AVCL Elements for Sampled Vehicle Control Orders or Settings295
Figure A.23. Content Model of the AVCL Message Header..297
Figure A.24. The AVCL Message “body” Element Content Model298
Figure B.1. Screen Snapshot of the AUVW being used to Simultaneously Edit

Scripted UAV, USV and UUV Missions (From: Davis and Brutzman,
05) ..302

Figure B.2. AUVW Icon and Tree Views of an AVCL Task-Level Behavior Script303
Figure B.3. AUVW Dialog Box for Editing UUV Waypoint Behaviors

(From: Davis and Brutzman, 05) ..303
Figure B.4. The AVCL Task-Level Behavior Script Corresponding to Figure B.2

Depicted in the AUVW Two-Dimensional Cartesian Coordinate-Based
Editing Interface (From: Davis and Brutzman, 05)305

Figure B.5. UUV and UAV Task-Level Behavior Scripts Depicted in the OpenMapTM
Editing Interface (From: Davis and Brutzman, 05)306

Figure B.6. An AVCL Declarative Agenda Displayed in the AUVW Two-
Dimensional and Icon Views ...307

Figure B.7. An AUVW Dialog Box for Editing a Declarative Mission Goals.................308
Figure B.8. ARIES and Seahorse UUVs Operating in the Same Virtual Environment

as Seen in the AUVW Xj3D Viewer (From: Davis and Brutzman, 05)310
Figure B.9. Sensor Modeling using the X3D Scene Graph and Xj3D Picking Nodes

(From: Davis and Brutzman, 05) ..312
Figure B.10. Support for Automated Conversion of Task-Level Behavior Scripts to

Vehicle-Specific Formats Using XSLT Stylesheets
(From: Davis and Brutzman, 05) ..314

xix

LIST OF TABLES

Table 2.1. The Available JAUS Components for use in Implementing Unmanned
Vehicle Functionality (After: JAUS, 04-2)...32

Table 2.2. The JAUS Numerical Data Types (After: JAUS, 04-3)35
Table 2.3. The JAUS Command Class Messages for Directing Unmanned Vehicle

Actions (After: JAUS, 04-2) ...36
Table 2.4. The JAUS Query and Inform Class Messages for Requesting and

Providing Unmanned Vehicle State Information (After: JAUS, 04-2)...........37
Table 3.1. Extensible Markup Language (XML) Design Goals (From: W3C, 04)47
Table 3.2. A Subset of Available Event Types that are Triggered during Simple

Application Programmer’s Interface (API) for XML (SAX) Parsing
(After: Hunter, et al., 04) ..55

Table 3.3. Java Architecture for XML Binding (JAXB) Heuristics for Mapping XML
Schema Simple Types to Java Types (After: Sun, 05)59

Table 3.4. JAXB Heuristics for Mapping XML Schema Complex Types to Java
Classes (After: Sun, 05) ..59

Table 3.5. JAXB Heuristics for Schema-Governed XML Element and Attribute
Accessors (After: Sun, 05)..60

Table 4.1. Standard Units of Measure used throughout the AVCL Schema74
Table 4.2. Miscellaneous Conventions used in AVCL...75
Table 4.3. Predefined XML Schema Primitive Datatypes..76
Table 4.4. Predefined XML Schema Datatypes that are Derived from Primitive

Types..77
Table 4.5. Exemplar AVCL Schema-Defined Simple Datatypes and the Predefined

XML Datatypes from which they are Derived ..79
Table 4.6. JAUS Command Class Platform Subgroup Messages.....................................81
Table 4.7. Generic Behavior Functional Categories of the CCL

(After: Komerska, et al., 99-2)..82
Table 4.8. CCL Generic Behaviors, Functional Categories, and Termination Criteria

(After: Komerska, 05)...84
Table 4.9. AVCL Closed-Loop / Terminating Task-Level Behaviors that have

Implicit Termination Criteria...85
Table 4.10. AVCL Closed-Loop / Open-Ended Task-Level Behaviors Requiring State

Feedback Control for an Indeterminate Period of Time85
Table 4.11. AVCL Open-Loop Task-Level Behaviors that Remain Active for an

Indeterminate Period of Time ..86
Table 4.12. Miscellaneous AVCL Task-Level Behaviors ..87
Table 4.13. JC3IEDM Action-Task Activities Incorporated into AVCL as Declarative

Agenda Goal Types..92
Table 4.14. Proposed Minimum Messaging Requirements to Support Multi-Vehicle

Operations ..97
Table 4.15. Message Types Incorporated into the AVCL Schema.....................................98
Table 5.1. Selected Phoenix UUV Behaviors (After: Davis, 96)103

xx

Table 5.2. Field Descriptions for Individual Entries of an ARIES Waypoint List
(From: Marco, 01)...104

Table 5.3. Seahorse UUV Task Set (After: NAVO, 04)..105
Table 5.4. REMUS UUV Objective Types (After: Hydroid, 02)107
Table 5.5. A Partial Mapping of AVCL Task-Level UUV Behaviors to Phoenix UUV

Behaviors ...109
Table 5.6. AVCL MetaCommand Name Attribute Values Used by the XSLT

Stylesheet Targeted to the Seahorse UUV Tasking Language120
Table 5.7. AVCL MetaCommand Name Attribute Values Used by the XSLT

Stylesheet Targeted to the REMUS UUV Family ...123
Table 5.8. Mappings from Phoenix UUV behaviors to AVCL Task-Level Behaviors ..133
Table 5.9. Mappings from REMUS UUV Objectives to Single AVCL Task-Level

Behaviors ...140
Table 5.10. JAUS Message Types that can be Mapped to a Single AVCL Construct149
Table 5.11. Translation of AVCL Information Request Messages to JAUS Messages ...152
Table 5.12. Translation of AVCL Information Reporting Messages to JAUS Messages 152
Table 5.13. Translation of AVCL Task-Level Behaviors to JAUS Messages153
Table 6.1. Characteristic Weights for Case-Based Reasoning Classification of Task-

Level Behavior Scripts...187
Table 6.2. Probabilities Used in the Naïve Bayes Classification of AVCL Task-Level

Behavior Scripts (Italics Indicate Probabilities that were Manually
Adjusted from Computed Values of 0.0 or 1.0)...189

Table 7.1. Characteristics of the Strategic and Tactical Levels of the RBM as Defined
in (After: Byrnes, 93)..197

Table 7.2. Characteristics of the ERBM Strategic Level..198
Table 7.3. Available ERBM Inter-Level Messages ..200
Table 7.4. Characteristics of the ERBM Tactical Level ...201
Table 8.1. Autonomous and Unmanned Vehicle Workbench (AUVW) Physically-

Based Model Telemetry String Fields Common to all Vehicle Types219
Table 8.2. UAV Physically-Based Model Vehicle Characteristics221
Table 8.3. UAV Physically-Based Model Longitudinal Coefficients221
Table 8.4. UAV Physically-Based Model Lateral Coefficients......................................222
Table 8.5. UAV Physically-Based Model Control Coefficients.....................................222
Table A.1. AVCL Numerical Simple Types..254
Table A.2. Optional Attributes Available for use with all AVCL Elements258
Table A.3. AVCL Complex Types Containing a Single Data Item in the form of a

“value” Attribute..258
Table A.4. Attributes of AVCL Elements Available for Representing Absolute and

Relative Positions...259
Table A.5. AVCL Orientation Element Type Attributes...262
Table A.6. Attributes Defined by the AVCL Complex Types for Representing

Velocity Relative to the World-Fixed and Body-Fixed Coordinate Frames .262
Table A.7. AVCL Attributes for Representing Doppler-Based Velocity Over the

Ground and Through the Air or Water ..263
Table A.8. AVCL Groups Used to Specify Depth, Altitude and Speed..........................263

xxi

Table A.9. AVCL Attributes Associated with the “AVCL” Element and its Immediate
Descendants ...266

Table A.10. Attributes Associated with AVCL Composite Waypoint Elements270
Table A.11. Available AVCL UUV Closed-Loop / Open-Ended Behaviors274
Table A.12. AVCL Open-Loop Behaviors for Control of Propellers, Cross-Body

Thrusters and Horizontal Control Planes...276
Table A.13. Elements for Specifying UAV-Specific Closed-Loop / Open-Ended and

Open-Loop Behaviors..282
Table A.14. Attributes of AVCL Elements Used to Define Goals in a Declarative

Agenda ...288
Table A.15. Attributes Associated with AVCL Vehicle-Specific Control-Order

Elements...296

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

xxiii

ACKNOWLEDGEMENT

It would be impossible to list all of the people upon whom I relied over the course

of this research. I would, however, like to take this opportunity to acknowledge a few of

the people whose support and encouragement proved invaluable:

Don Brutzman, for his time, insight and friendship. Without his assistance this

work would not have been possible. He was relentless, and for that I am eternally

grateful.

Robert McGhee for his continuing mentorship and inspiration. Without his

encouragement I would never have even begun this process. It is an honor to have his

signature on this document.

Anthony Healey for his ideas and insights and for allowing me to test my ideas on

his vehicle. His seemingly unlimited knowledge, experience, and passion for the science

are truly inspirational.

Neil Rowe for his across-the-board support from start to finish. Whether helping

with qualification exam preparation, helping me to view class material in the context of

this research, or offering ideas for exploration, he was always available and his input was

always on the mark.

Chris Darken for always making himself available to critique ideas and provide

advice. His ideas formed the basis of a number of avenues of exploration described here.

My fellow Ph.D. students. Whether it was at happy hour, one of our semi-regular

breakfasts, or idle chatter in the office, they made the experience a lot more pleasant than

it would have been without them.

And finally, but most importantly, my lovely wife, Cecelia. Of all of the things

with which I have been blessed during my time in Monterey, I am most grateful for her.

I would also like to acknowledge the financial support of the Navy Modeling and

Simulation Office, Naval Research Laboratory, Stennis Space Center, Naval Undersea

Warfare Center, Newport, Naval Facilities Engineering Service Center, and the Defense

Science Technology Office, Singapore.

xxiv

THIS PAGE INTENTIONALLY LEFT BLANK

xxv

LIST OF ACRONYMS AND ABBREVIATIONS

$-Calculus Cost Calculus
A* A-Star Search
ADEPT All-Domain Execution and Planning Technology
API Application Programmer’s Interface
ARIES Acoustic Radio Interactive Exploratory Server
AUV Autonomous Underwater Vehicle
AUVW Autonomous and Unmanned Vehicle Workbench
AVCL Autonomous Vehicle Command Language
C2L Compact Control Language
CCL Common Control Language
CNO Chief of Naval Operations
CoDA Cooperative Distributed Autonomous Oceanographic Sampling

Network
D* Focused Dynamic A* Search
DAML+OIL DARPA Agent Modeling Language + Ontology Inference Layer
DAMN Distributed Architecture for Mobile Navigation
DARPA Defense Advanced Project Agency
DIS Distributed Interactive Simulation protocol
DOD Department of Defense
DOM Document Object Model
DON Department of the Navy
DTD Document Type Definition
DVD Digital Versatile Disc
ERBM Extended Rational Behavior Model
ESRI Environmental Systems Research Institute
FIPA Foundation for Physical Agents
GPS Global Positioning System
HTTP Hypertext Transfer Protocol
ICAO International Civil Aviation Organization
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IMO International Maritime Organization
ISO International Organization for Standardization
IST Information Society Technical Programme
ITU International Telecommunication Union
JAUS Joint Architecture for Unmanned Systems
JAXB Java Architecture for XML Binding
JC3IEDM Joint Consultation, Command and Control Information Exchange

Data Model
JRP Joint Robotics Program
kΩ K-Omega Optimization
MIP Multilateral Interoperability Programme
NAS National Academy of Sciences

xxvi

NAVO Naval Oceanographic Office
NPS Naval Postgraduate School
NP-hard Nondeterministic-polynomial-time-hard computational complexity
OGC Open Geospatial Consortium
OIAG Open Inventor Architecture Group
ONR Office of Naval Research
OMG Object Management Group
OWL Web Ontology Language
RBM Rational Behavior Model
REMUS Remote Environmental Sensing UnitS
SAX Simple API for XML Parsing
SGML Standard Generalized Markup Language
T* Time-Bounded A* Search
UAV Unmanned Air Vehicle
UGV Unmanned Ground Vehicle
USV Unmanned Surface Vehicle
UUV Unmanned Underwater Vehicle
W3C World Wide Web Consortium
X3D Extensible Three-Dimensional Graphics
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
XPath XML Path Language
XSBC XML Schema-Based Binary Compression
XSLT Extensible Stylesheet Language for Transformations

1

I. INTRODUCTION, MOTIVATION, AND OBJECTIVES

A. DISSERTATION STATEMENT
Recent events have highlighted numerous military and civilian applications for

which autonomous vehicles might prove useful. Further, a number of these applications

can benefit from the use of multiple, possibly dissimilar autonomous vehicles operating

in a cooperative, or at least complementary, manner. Unfortunately, currently available

autonomous vehicles are, by and large, designed to operate as independent entities

making coordinated multi-vehicle missions unfeasible from a practical standpoint.

Additionally, vehicle-specific data formats and mission planning systems make planning

complementary multi-vehicle missions (i.e., missions in which multiple vehicles operate

independently to accomplish common goals without direct interaction or cooperation)

problematic.

Significant recent research has investigated methodologies and protocols to foster

interoperability among autonomous vehicles, however, the preponderance of this research

has assumed that the vehicles involved are inherently compatible. That is, either the

multi-vehicle system consists solely of one type of vehicle, or all vehicles use the same

language for mission specification and inter-vehicle communication. Unfortunately,

assumed compatibility is unrealistic given current inventories of legacy vehicles and the

parallel development of vehicles by various commercial, academic, and government

entities.

The preceding observations call into question the inherent suitability of both

current and developmental vehicles for multi-vehicle operations: currently available

autonomous vehicles do not directly support coordinated operations, and forthcoming

vehicles will depend on vehicle-specific data formats and protocols to provide

compatibility with similarly programmed vehicles. It is this implicit shortcoming in the

capabilities of both current and envisioned autonomous vehicles that this research

addresses.

The main thrust of this work is to demonstrate the use of a common data model or

ontology to foster a level of compatibility among autonomous vehicles regardless of

2

inherent vehicle differences. Ultimately, the compatibility provided by the common data

model will foster inter-vehicle coordination and cooperative operations. Discussed in

some detail in Chapter IV, the term ontology refers to a formal description of a

vocabulary, including word meanings, assumptions and relationships, that can be used to

describe and represent an area of knowledge (Daconta, et al., 03), in this case

autonomous vehicle operations. An exemplar has been defined and implemented using

the Extensible Markup Language (XML) schema (W3C 04-2)(W3C 04-3) and utilized as

a framework for autonomous vehicle tasking and inter-vehicle communications between

dissimilar vehicles. Further, the ability to automatically convert between this model-

constrained format and vehicle-specific formats as required is demonstrated.

Additionally, this research uses the exemplar data model to improve upon existing

autonomous vehicle control paradigms by incorporating multiple levels of a layered

control architecture in the same data model. Specifically, an extension to the Rational

Behavior Model (RBM) (Byrnes, 93), a hybrid control architecture, is implemented that

connects high-level (Strategic) control based on a declarative goal-based mission

specification in the form of a finite state machine with mid-level (Tactical) control using

sequentially initiated task-level behaviors.

B. MOTIVATION AND OVERVIEW

1. The Multiple Autonomous Vehicle Inter-Operability Requirement
The military services have recognized the distinct advantages provided by the

utilization of unmanned vehicles for a variety of missions that are considered too “dirty,

dull, or dangerous” for humans (JRP, 04). Unmanned Underwater Vehicles (UUV) were

recently used in mine countermeasure and search and rescue operations in support of

Operation Iraqi Freedom, crash and salvage operations in support of space shuttle

Discovery recovery operations, and berthing surveys in support of port security

(Simmons, 04). While none of these operations involved multi-vehicle operations, they

have provided a glimpse of the reliance on UUVs in future naval operations.

The U.S. Navy’s Unmanned Undersea Vehicle Master Plan has identified nine

potential signature capabilities of particular interest including intelligence, surveillance

and reconnaissance, mine countermeasures, communication / navigation network node,

oceanography, and anti-submarine warfare (DON, 04). Capability evolution in each of

3

these areas is anticipated to involve increasing autonomy as well as increasing numbers

of vehicles operating together. Two exemplar anticipated evolutions in the signature

capabilities involving coordinated multiple-UUV capabilities are mobile undersea

networks (communications / navigation aid) and Shallow Water Autonomous

Reconnaissance Modules (DON, 04)(St. Peter and LaPoint, 04). Autonomy and

communication are considered key technology requirements for all four signature

capabilities, while “multiple vehicles working together” is identified as having associated

risks that must be addressed in order to achieve the target capabilities (DON, 04).

A broader analysis of the potential application of autonomous vehicles in a naval

environment can be found in the National Academy of Sciences (NAS) Report on

Unmanned Vehicles in Support of Naval Operations (NAS, 05) which identifies a

number of potential military missions autonomous vehicles. In addition to reiterating the

UUV missions described in the Navy’s UUV Master Plan, this report discusses the

potential use of unmanned air (UAV), ground (UGV), and surface (USV) vehicles for

intelligence, surveillance and reconnaissance, suppression of enemy air defense,

amphibious landing zone reconnaissance, concealment area (e.g., caves or building

interiors) investigation, ordnance disposal and mine clearance, logistics, and shore

bombardment fire control observation. In addition to a detailed discussion of potential

uses, this report rigorously analyzes the applicability of current technologies, identifies

cultural, research, and acquisition shortcomings that inhibit the development of mission-

suitable vehicles, and proposes roadmaps to achieve required capabilities.

A product similar to the Navy’s Unmanned Undersea Vehicle Master Plan is the

Department of Defense Joint Robotics Program Fiscal Year 2004 Master Plan which

focuses on UGVs. This document outlines the near and mid-term goals for UGVs and

defines development priorities to achieve them. While not directly addressing multi-

vehicle operations, it does address a number of target missions for which coordinated

multi-vehicle operations might be advantageous including reconnaissance, surveillance

and target acquisition, detection and neutralization of minefields, force protection, and

contaminated area operations (JRP, 04). Excerpted from this work, Figure 1.1 illustrates

the projected transition from remotely commanded to fully autonomous operations that

was identified by (DON, 04) as a key technology. Among the primary near-term goals

4

identified is the development of a common architecture for unmanned vehicles—the Joint

Architecture for Unmanned Systems (JAUS) (JRP, 04), which is covered in more detail

in Chapter II. For now it is sufficient to note that JAUS defines components that can be

combined to design arbitrary unmanned or autonomous vehicles as well as a message set

for communication between individual components or vehicles. A significant aspect of

JAUS that it is platform independent so long as the platform is “JAUS compliant.”

Figure 1.1. Projected Evolution of the Level of Autonomy in Unmanned Vehicles from

1990 to 2020 (From: JRP, 04)

UAV utilization has been well documented in recent military operations, but the

vehicles concerned were primarily remotely operated vice autonomous. Additionally, the

military services have not, as yet, developed a master plan for UAV development or

procurement, but tactical UAV utilization has been doctrinized to some extent in service-

specific operational guides such as (CNO, 04). Unfortunately, as UAV tasking increases,

the limitations of remotely operated vehicles due to operator overload are being reached.

The obvious solution is to use increased autonomy to enable individual operators to

monitor and control more vehicles simultaneously (McLoud and Wu, 04). A predictable

evolution of increased individual UAV autonomy as an enabler of multi-vehicle

operations is increased multi-vehicle autonomy as evidenced by recent research in the

area of cooperative planning for UAVs (Ahner, 04)(Neushul, 03).

5

To date, the use of unmanned and autonomous vehicles for nonmilitary

applications, whether as single units or coordinating groups, has been somewhat limited

and does not approach the extent of utilization in military settings, at least in part due to

cost-versus-gain issues. However many of the military applications for unmanned and

autonomous vehicles have fairly obvious non-military parallels. For instance many

aspects of surveillance and interdiction are applicable to homeland defense and border

security while the search and detect aspects of mine countermeasures closely parallel

those of maritime search and rescue or crash and salvage operations. As an example, the

National Oceanic and Atmospheric Administration has proposed autonomous underwater

vehicles for coastal survey, fisheries management, ocean exploration, and physical

oceanographic research (Manley, 04).

2. A Common Data Model as a Coordinated Operations Enabler
Notwithstanding that coordinated multi-vehicle operations are now generally

acknowledged as being desirable, the preponderance of research to date assumes that the

vehicles involved are inherently compatible. That is, either the multi-vehicle system

consists solely of one type of vehicle, or all vehicles use the same language for mission

specification and inter-vehicle communication. This is unrealistic given current

inventories of diverse legacy vehicles and the unsynchronized, parallel development of

vehicles by various commercial, academic, and government entities, but a common data

model can go a long way in filling this interoperability shortcoming.

Fortunately, arbitrary vehicles of a given type have significant functional

similarities regardless of mission specification methodology and available vehicle-

specific commands. For instance, while individual autonomous ground vehicles may

have different means and speeds of locomotion, spatial positioning and orientation for

any ground vehicle can be ordered as a waypoint (geographic position and possibly

heading). Speed (as a percentage of max speed) and path can also be part of the order, or

can be left to the individual vehicle (which presumably has embedded local path planning

and obstacle avoidance). This inherent similarity in the capabilities of all vehicles of a

given type (and even those of different types in many cases) allows for the definition of a

set of task-level or script commands that can be used individually or as composite

commands to capture the semantics of arbitrary vehicle-specific commands. In short, for

6

any mission defined in a vehicle-specific language, an equivalent mission can be defined

using task-level behaviors defined by a more general data model.

The ability to define vehicle-independent missions that are equivalent to arbitrary

vehicle-specific missions is only part of the problem—in and of itself, a common data

model is not the goal. Rather, it needs to serve as a bridge between existing and future

vehicle-specific languages as well as their human operators. That is, a mechanism must

exist to automatically convert between vehicle-specific data formats and the common

data model. This research demonstrates the use of XML technologies such as the

Extensible Stylesheet Language for Transformations (XSLT) and XML data binding to

convert exemplar data-model-compliant documents into arbitrary vehicle-specific

formats. Similarly, context-free grammar definitions for vehicle-specific data formats are

used as a linchpin of automated translation of vehicle-specific data into data-model-

compliant XML. Discussed in detail in Chapter V, this procedure provides a suitable

methodology for automated conversion between arbitrary vehicle-specific data formats

by leveraging the generality of a vehicle-independent data model with XSLT, XML data

binding and context-free-grammar-based parsing of non-XML data formats.

Intervehicle communication is essential to effective coordinated operations. As

with tasking, individual vehicles have various communications capabilities, protocols and

message sets that must be reconciled if they are to interoperate. A methodology similar

to that used to convert missions from one vehicle-specific language to another is used to

convert vehicle-specific communications as required. An exemplar architecture for

unmanned system messaging is provided by JAUS which incorporates an explicitly

defined message set and format (JAUS 04-4). Although JAUS in its present form is more

suitable for remotely operated vehicles than autonomous vehicles, similarities exist

between a number of JAUS messages and communications aspects of the exemplar data

model developed in this research. As with mission specification, XSLT, XML data

binding, and context-free grammars are used to convert between data-model-compliant

XML and vehicle-specific message formats (including JAUS when appropriate).

Additionally, XML Schema-Based Binary Compression (XSBC) is used to facilitate the

transmission of admittedly bulky XML messages over noisy and bandwidth-limited

communications paths (XSBC is covered in Chapter III).

7

Automated conversion of vehicle-specific data from one robot-tasking format to

another is a powerful capability that can significantly enhance interoperability between

dissimilar vehicles, but it does not directly address increased autonomy. A vehicle-

independent data model, however, can be designed in such a way as to support increased

autonomy. The mission scripting task-level behaviors are by nature well suited to many

artificial intelligence planning algorithms. Each command has preconditions that must be

true in order for it to execute as well as postconditions that are expected to be true upon

successful completion. A higher-level, goal-based mission specification vocabulary can

be designed to take advantage of this observation. Goal-based missions are defined

declaratively using this vocabulary, and planning algorithms generate sequential plans

that achieve the declarative goals using task-level behaviors. Once generated, the task-

level scripts are converted into vehicle-specific missions for execution. This capability is

demonstrated off line and in real time as an implicit function of a multi-layer vehicle-

independent control architecture.

3. Data Model Use for Cross-Application Data Sharing
Knowledge representation has long been a topic of interest in the field of artificial

intelligence but the design of data models to facilitate dissimilar system interoperability is

less explored. The evolution of the Internet, however, has led to an increased desire to

share information between applications and systems and also to make data more easily

accessible. In the database domain this trend has led to the development of protocols and

application programmer’s interfaces (API) along the lines of the Open DataBase

Connectivity standard. On a broader scale XML and associated technologies have

emerged as a mechanism for facilitating structured data exchange among highly disparate

systems. In particular, the use of XSLT has become the method of choice for mappings

between the various data models of dissimilar systems and applications (Kay, 03).

Further, the notion of the Semantic Web is a primary driver behind current research into

ontologies and conceptual data models. Semantic Web approaches often include the goal

of enabling applications to automatically locate and utilize available data sources without

a priori knowledge of their content, format or even their existence (Daconta, et al., 02).

Given the growth of electronic commerce in recent years, it is understandable that

much current research in this area focuses on business applications relying on the Internet

8

(Fensel, 01). Efforts along the lines of the Joint Consultation, Command and Control

Information Exchange Data Model (JC3IEDM), however, provide an indication that

common data models can effectively facilitate information exchange between systems

that are not specifically designed to operate together regardless of whether the exchange

takes place over the internet or not. JC3IEDM is a multi-lateral effort to design a data

model for the exchange of command and control information between military systems.

Although JC3IEDM and its applicability to this research are discussed in more detail in

Chapter II, it is worth noting here that JC3IEDM places no requirements whatsoever on

the internal data models of individual applications—it is concerned solely with data that

is exchanged. That is, individual applications and systems can represent and interpret

internal data in any way, but in order to exchange data with another system, it must be

JC3IEDM-compliant (MIP, 03-1).

The application of a common data model to the domain of autonomous vehicle

command and control as implemented in this research takes a similar approach. With the

exception of the data-model-centric multi-layer controller discussed in Chapter VII,

individual vehicles are not required to utilize the data model internally. One difference

between the approach of this research and that of JC3IEDM is a relaxation of the

requirement for model-compliant data transfers so long as the data model is used as the

bridge between systems. In other words, the data transmission can be in any format so

long as it is converted from the transmitting system’s native format into a common data-

model-compliant format and eventually into the receiving system’s native format. This

provides the flexibility to perform the required translations at the most appropriate

location to take advantage of vehicle capabilities, deal with communications path

limitations, etc.

C. OBJECTIVES
This dissertation addresses the following research questions:

• Can a single data model be used to accurately represent tasking for
arbitrary autonomous vehicles? The obvious (but unwieldy) answer is to
explicitly incorporate the tasking semantics of all vehicles of interest into
the data model. This, however, provides little basis for automatic
translation between the model and arbitrary vehicle-specific formats. A
more tenable solution takes advantage of the fact that despite differing
lexical and semantic tasking formats, at the most basic levels, autonomous

9

vehicle tasking is implemented through the deliberate execution of one or
more elements from a finite set of simple tasks or behaviors. Rephrased,
most robots share similar functional capabilities despite major differences
in communications and tasking styles. Identifying a suitable set of task-
level behaviors is, therefore, a key to the development of a useful common
data model for autonomous vehicle tasking. Ultimately, the elements of
this set can be used to capture the semantics of arbitrary vehicle-specific
commands under the umbrella of a single ontology.

• Can a common ontology or data model be utilized as a bridge between
vehicle-specific tasking and communications languages of incompatible
vehicles? That is, can a common data model be defined in such a way as
to facilitate the automated conversion of arbitrary vehicle-specific data to
model-compliant data and vice versa? Resolution of this issue depends on
the previous research question—implementation notwithstanding, if
arbitrary vehicle-specific data formats cannot be accurately represented in
the common data model, conversion (automated or not) between the
common data model and vehicle-specific formats will not be possible.
Assuming the availability of an appropriate task-level behavior set,
translation mechanisms must still be developed. Implementation of the
data model using XML provides a partial solution. Through the use of
XML utilities such as the XSLT and XML-data binding, data-model-
compliant data is translated into arbitrary vehicle-specific formats without
difficulty. The requirement to convert non-XML vehicle-specific data
formats into the common data model is more problematic. Recognizing,
however, that vehicle-specific data formats are in reality context-free
languages provides a basis for automated translation (Crangle and Suppes,
94). Formal definition of vehicle-specific data formats using context-free
grammars enables the generation of parse trees that are traversed in depth-
first order and translated to the common data model using templates.

• Can the data model described in the previous two paragraphs be expanded
to capture vehicle-specific data of a more symbolic nature? While the
task-level control paradigm is suitable for most currently available
vehicles, a number of autonomous vehicle control architectures that
support higher-level reasoning have been the subject of recent research
(Byrnes, 93)(Rosenblatt, 97)(Ricard and Kolitz, 02)(Stentz, 04). These
control architectures are at least theoretically capable of interpreting data
of a more symbolic or declarative nature (e.g., tasking as a set of high-
level goals as opposed to a sequentially executed script). One implication
relating to the use of a common data model raised by this potential for
declarative tasking is the required capture of the declarative semantics by
the data model—something beyond the capability of the task-level
behavior set. It is therefore necessary to explicitly provide for symbolic
definition of missions. In the exemplar data model, declarative missions
are defined as in the form of a finite state machine. Individual states
correspond to individual mission goals (e.g., search a geographic area) and

10

transitions are executed when the vehicle succeeds (or fails) in the
accomplishment of the goal corresponding to the current state.

• A second, implication of declarative mission definition is the requirement
for conversion between declarative and task-level mission definitions. For
a common autonomous vehicle data model to be compatible with both
vehicles utilizing task-level behaviors and those utilizing symbolic
mission definitions, mechanisms must be developed for converting
between declarative symbolically defined missions and sequential task-
level defined missions. The previously discussed XSLT and context-free-
grammar-based conversions do not suffice for this purpose. This research
demonstrates that translation of symbolic missions to task-level missions
can be accomplished through fairly traditional artificial intelligence
planning algorithms such as means-ends analysis, GraphPlan and A-Star
(A*) search (Luger, 02)(Russell and Norvig, 03). Upward translation of
task-level missions to symbolic missions is a more difficult problem
because such interpretation requires inference of intent. That is, what goal
is a particular sequence of task-level behaviors intended to accomplish?
This research explores the use of machine learning techniques such as
case-based reasoning and naïve Bayesian analysis to infer reasonable
“intent” from task-level scripts.

• A final research question concerns the use of a common data model to
support and extend existing autonomous vehicle control architectures.
Common characteristics of hierarchical and hybrid control architectures
(discussed in Chapter II) are a top-most level utilizing a general or abstract
definition of the mission to direct the activities of a lower level through
the use of specific vehicle behaviors or primitive objectives. The
previously discussed translation of declarative missions to ordered lists of
task-level behaviors is similar enough to the requirements of multi-layered
control architecture implementation that it raises the following question:
can a common data model capable of representing both declarative and
task-level missions be utilized as an integral part of a multi-layer control
architecture? This possibility is explored by extending the RBM to utilize
the common data model symbolic mission definition capability at the
Strategic level and the task-level behavior set at the Tactical and
Execution levels.

D. DISSERTATION ORGANIZATION
Chapter II of this dissertation comprises an overview of related work. Of specific

interest are other languages, data formats, and methodologies currently used for

autonomous vehicle command, mission specification, multi-vehicle system definitions,

and communications along with the relative strengths and weaknesses of reach. Chapter

III provides an overview of XML and applicable XML technologies that are utilized to

demonstrate the concepts and methodologies explored in this research. Chapter IV

11

begins with a discussion of the similarities and differences between ontologies and data

models, and concludes with an overview of data-model requirements for the support of

this work including the task-level behavior set, declarative mission specification,

communications and mission results data. Also included in Chapter IV is a brief

discussion of the exemplar data model implemented in support of this research—the

Autonomous Vehicle Command Language (AVCL). Chapter V provides a detailed

analysis of the approaches for converting between vehicle-specific formats and the

vehicle-independent data model. Chapter VI covers the implementation of planning

algorithms and other methodologies for conversions between declaratively defined

missions to task-level behavior scripts and the inference of appropriate goals

corresponding to task-level behavior scripts. Chapter VII deals with the extension of the

RBM architecture using the exemplar data model and the implementation of this

extended architecture on an existing UUV. Chapter VIII covers simulation and real-

world experimentation and results supporting this research. The dissertation concludes

with Chapter IX’s discussion of conclusions to be drawn from this research and

recommendations for future work. Appendices are provide to describe the specific

content structure and semantics of the exemplar data model and the mission-planning,

rehearsal and simulation application that was developed to support this research.

12

THIS PAGE INTENTIONALLY LEFT BLANK

13

II. REVIEW OF RELATED WORK

A. INTRODUCTION
Two areas of current research that are relevant to the development of a common

autonomous vehicle ontology are addressed in this chapter. First is a survey of

commonly utilized autonomous vehicle control architectures, their relative strengths and

weaknesses and the potential means in which this research complements or augments

them. The main point to be taken from this portion of the discussion is that a common

data model is capable of supporting any of these methods, thus providing a means of

facilitating interoperability between autonomous vehicles utilizing different control

paradigms.

Following the discussion of general autonomous vehicle control architectures, a

brief discussion of the RBM architecture is provided in order to illustrate how a common

data model supporting abstract and declarative mission definition along with sequential

task-level mission definition can be inherently compatible with a multi-layered

architecture.

The final section of this chapter covers research in the area of platform-

independent languages, architectures and data models. A number of proposed

autonomous vehicle programming languages and architectures potentially falling into this

genre such as Robotalk (Phoha and Schmiedekamp, 04), Yampa (Hudak, et al., 03) and

Player / Stage (Vaughan, et al., 03) are not covered because they are utilized to program

autonomous vehicle controllers symbolically in the same manner that Lisp or Prolog

might be used to develop traditional artificial intelligence applications. Of more interest

from the standpoint of a common data model are those languages and data formats that

are used to define individual missions in a relatively abstract and straightforward manner

and those that are used for inter-vehicle communications. Specifically covered here are

the Naval Undersea Warfare Center’s and University of Massachusetts’ Common Control

Language (CCL), Woods Hole Oceanographic Institution’s Compact Control Language

(C2L), JAUS, and the Multilateral Interoperability Programme’s JC3IEDM.

14

B. AUTONOMOUS VEHICLE CONTROL PARADIGMS

1. Scripted Control
Of all the methods commonly utilized for autonomous vehicle control, scripted

control is the most straightforward. In this methodology, a vehicle mission is defined as

a series of discrete commands that can include open-loop commands that order control

settings independent from vehicle response (e.g., rudder deflection or power setting),

closed-loop commands (e.g., headings, speeds, or waypoints), or commands that order

behaviors not directly related to vehicle control (e.g., load a new mission script).

Examples of languages used for scripted control of autonomous vehicles include those

described in (Brutzman, 94), (Davis, 96) and (Marco, 01) that have been used by the

Naval Postgraduate School (NPS) Phoenix and Acoustic Radio Interactive Exploratory

Server (ARIES) UUVs, and (Hydroid, 01) for defining Remote Environmental Measuring

UnitS (REMUS) UUV missions. Figure 2.1 shows an example Phoenix or ARIES

mission using the language described in (Brutzman, 94) and (Davis, 96). In this tasking

language, each scripted command appears on a single line, begins with a reserved

keyword, and is followed by zero or more (sometimes optional) parameters.

The most significant advantages of scripted autonomous vehicle control are

clarity and simplicity. Since the mission consists of a sequentially executed series of

steps, it can be intuitively defined in a fairly straightforward manner. Additionally,

vehicles executing scripted missions behave in a predictable manner—they execute each

command in their script in order until the mission is concluded or a command cannot be

completed successfully (in such cases, the most common response is to execute a

predefined mission abort script). The most obvious disadvantage to autonomous vehicle

control using fixed scripts is the lack of flexibility. The environments in which

autonomous vehicles operate are inherently dynamic, making the ability to adapt to

changing conditions highly desirable. Additionally, it is highly unlikely that an ideal

mission can be defined for anything more than the most mundane tasking using a fixed-

sequence script. There exists strong motivation to provide a mechanism by which the

vehicle can adjust its mission as more information about the environment is obtained.

While this lack of flexibility limits the capabilities of pure scripting, this control

paradigm remains an integral part of many more advanced control architectures that will

15

be discussed in subsequent sections. One example is provided in the (Nicholson, 04)

implementation of the RBM, a three-layer control architecture modeled after the

command hierarchy of U.S. Navy submarines (Byrnes, 93)(Healey, et al., 96). At the top

(Strategic) RBM layer, an abstract mission definition is utilized to plan a series of script

commands that are issued to the middle (Tactical) level for execution. The Tactical level

conducts any required numerical processing and provides individual control orders to the

lowest (Execution) level which is in turn responsible for actual vehicle hardware

interface. In the (Nicholson 04) implementation, the RBM Strategic level generates

scripts which are issued to the Tactical level. As the mission progresses, new scripts are

generated by the Strategic level and issued to the Tactical level replacing any previously

issued script. Viewed by itself then, this RBM Tactical level implementation relies on

scripted control. The addition of higher level control structure, therefore, extends the

capability of scripted control without eliminating it and provides an example of the

natural evolution of robust multi-layer control paradigms from simple scripted control.

Figure 2.1. A Scripted Phoenix Unmanned Underwater Vehicle (UUV) Mission in the

Behavior Scripting Language described in (Brutzman, 94) and (Davis, 96)

POSITION 0 0 0
RPM 500
WAYPOINT 100 10 10
HOVER 100 50 10
GPSFIX
RPM 700
WAYPOINT 0 50 5
WAYPOINT 0 100 5
WAYPOINT 100 100 5
HOVER 100 150 10
GPSFIX
WAYPOINT 0 150 10
WAYPOINT 0 200 10
WAYPOINT 100 200 10
WAYPOINT 100 250 10
HOVER 0 250 10
GPSFIX
HOVER 0 0 10 360
DEPTH 0
WAIT 25
QUIT

16

Seen against this frequently utilized backdrop, a common autonomous vehicle

data model can be applied to the domain of script-based control in a number of ways.

The most obvious is the mapping and automatic conversion between task-level behaviors

and vehicle-specific script commands. Additionally, a common data model supporting

both high-level declarative and task-level mission definition and mechanisms for

automatically translating missions of one form to the other can be used to intuitively

develop mission scripts that meet declarative mission requirements. More subtle, but

possibly more interesting, is the use of a data-model-based planner in place of (rather

than as a data source for) upper level of a multi-layer control architecture like the RBM

Strategic level. By extension, therefore, this approach provides a pattern for the use of a

generic data-model-based planner as a plug-in higher-level controller for arbitrary

vehicles that normally run only predefined scripts.

2. Hierarchical Control
A second autonomous vehicle control methodology that is similar in many

respects to scripted control is hierarchical control. As with scripted control, a mission

consists of a series of steps or tasks. Rather than defining the entire mission in terms of

the most atomic steps, a layered approach is utilized where higher layers contain complex

tasks and lower layers represent the complex tasks as a series or simpler sub-tasks as

depicted in Figure 2.2. Layers at increasing depths of the hierarchy divide complex tasks

into increasingly specific sub-tasks. Early hierarchical control exemplars are provided by

the Task Decomposition architecture described in (Albus, 93) and the Activity-Based

Mission Planning and Plan Management system described in (Hall and Farrell, 94). Both

of these systems possess all of the functionality of more modern hierarchical control

architectures. As a more specific example of hierarchical planning, a UAV complex task

might be “search area X.” This task may be divided into subtasks “transit to area X,”

“anchor in area X,” “scan with radar,” and “return to base.” The “transit to area X” task

might be subdivided yet again into executable subtasks “take off,” “climb to transit

altitude X,” and “follow route to area X entry point.”

A hierarchical-control mission is specified as a series of complex tasks or

prioritized goals. Planning algorithms are applied at each level to generate subtasks for

the next lower level. Planning is typically only required for the next task to be executed

17

at each level. High-level plans, therefore, are more general in nature and cover longer

periods of time while low-level plans are increasingly more detailed but are expected to

complete in the relatively near future. As a result, effort is not expended in the

generation of detailed long-term plans that have a high probability of becoming obsolete

before they are fully executed (Stentz, 04).

Figure 2.2. A Typical Hierarchical Architecture for Autonomous Vehicle Control

Among the most capable multi-layer control architectures currently available is

the Draper Laboratory’s All-Domain Execution and Planning Technology (ADEPT)

(Ricard and Kolitz, 02). The result of ten years of evolution of autonomy projects such as

the Mission Planning and Plan Management system of (Hall and Farrell, 94), ADEPT

uses increasingly detailed activities that are drawn from an activity library appropriate to

the hierarchical level. Each activity consists of an activity model (i.e., a description of

the ultimate effect of the activity) and an activity planner that describes how the activity

is to be decomposed into activities appropriate for the next lower level (Hall and Farrell,

94). Path planning algorithms include A*, Focused Dynamic A* (D*), and Time-

Bounded A* (T*) search implementations while other activities utilize algorithms more

suited to their specific requirements (Ricard and Kolitz, 02). In all cases, monitoring and

diagnosis modules at each layer direct planning and execution based on mission

requirements and evolving situational awareness.

Hierarchical control has the advantage of being well suited for complex tasks—

the types of tasks that can be decomposed into subtasks in a fairly straightforward

manner. Numerous planning algorithms have been specifically developed to deal with

this sort of problem and can be applied arbitrarily in generating subtasks at various levels.

Additionally, recent experimentation with hierarchical control and planning for multi-

18

vehicle systems provides an indication that the paradigm is well-suited not only for

single-vehicle control, but is potentially applicable in the domain of multi-vehicle control

as well (Yang, et al, 05). The most significant disadvantage is potentially slow,

intermittent, or inappropriate response to a dynamic or uncertain environments due to

planning and replanning requirements. Also a factor is the dependence of successful plan

execution on the accuracy of the vehicle’s world model at the time the plan was

developed. (Stentz, 04)(Russell and Norvig, 03)

On a superficial level, the application of a common data model to the domain of

hierarchical control is relatively simple. It consists of mappings between the common

data model and potential tasks and subtasks coupled with automated translations between

the vehicle-specific hierarchical commands and the common data model. A more

interesting application of the ontology to hierarchical control arises from its potential to

represent both declarative and task-level missions along with the ability to automatically

convert between the two. As previously noted, the conversion from data-model-

compliant declarative goals to task-level missions closely mirrors a hierarchical control

architecture’s generation of detailed plans from high-level tasks. The obvious conclusion

is that a single data model or ontology can be used as the basis for implementation of a

hierarchical control architecture. As alluded to previously, this ontology-based control

architecture can provide a simple means of extending the capabilities of simple scripted

control architectures by adding more robust high-level control.

3. Behavioral Control
A third method of autonomous vehicle control is behavioral control. Vehicles

using this form of control activate predefined behaviors as required to achieve the goals

of the mission. Available behaviors for a vehicle might include “maintain heading,”

“avoid obstacle,” or “track target.” In most cases, multiple behaviors can be active

simultaneously. For instance an UUV might have one behavior controlling heading,

another behavior controlling depth, and a third behavior controlling sensors. Many

behaviors, on the other hand, are mutually exclusive and cannot be active at the same

time—“maintain heading” and “avoid obstacle,” for example, are in all likelihood

incompatible. It is the responsibility of the top level of the vehicle control architecture to

ensure that mutually exclusive behaviors are not activated simultaneously. (Stentz, 04)

19

In its simplest form, behavioral control mirrors the control paradigm of a purely

reactive agent. Consider, for example, a homing torpedo—an autonomous underwater

vehicle (AUV) with a simple unchanging goal: impact a target. Immediately following

launch, active behaviors might consist of “dive,” “power up computer and sensors,” and

“steer to search bearing.” Upon reaching search depth and heading with computer and

sensors powered up, “maintain depth,” “steer through search pattern,” and “search for

target” behaviors might become active. Finally, upon target detection, final-phase

behaviors such as “attain target depth,” “steer towards impact point,” and “track target

with sensor” can be activated and will remain active until impact.

In more complex systems, behaviors are activated and deactivated based on

arbitrary and possibly dynamic run-time conditions rather than a predetermined static

mission script. In these systems, a more robust top-level controller is required to activate

and deactivate the appropriate behaviors to successfully complete a complex mission in a

dynamic environment. One such system is the Distributed Architecture for Mobile

Navigation (DAMN) (Stentz, 04). The top-level controller of this system utilizes an

arbiter to determine vehicle controller commands based on the currently perceived

situation, the requirements of the mission, and the potential control requirements of the

various competing behaviors. As the example heading-behavior arbiter depicted in

Figure 2.3 indicates, the DAMN arbiter examines the control command called for by all

behaviors potentially controlling a specific parameter and then determines the most

advantageous behavior to activate for the current situation. That action may be the one

that progresses most directly towards the highest priority goal, minimizes the near-term

risk to the vehicle, or some combination of these or other desirable outcomes.

Another example of a robust behavior control-based system is The Pennsylvania

State University Applied Research Laboratory’s Intelligent Control architecture. This

system uses a perception module that fuses and interprets sensor data in order to maintain

situational awareness and build a comprehensive world view that includes all perceived

objects and their classifications. Behaviors are contained within a response module that

assumes mission management and planning responsibilities. A mission manager in the

response module determines the appropriate behaviors to activate and replans as required

when the world model changes or received communications modify the mission

20

requirements. Active behaviors control actuators, sensors and outbound communications.

A graphical depiction of the relationship between the perception and response modules is

provided in Figure 2.4. (Lewis and Weiss, 04)

Figure 2.3. A Distributed Architecture for Mobile Navigation (DAMN) Arbiter for

Autonomous Vehicle Heading Control Behaviors (After: Rosenblatt, 97)

Figure 2.4. Behavioral Autonomous Vehicle Control as Implemented in the

Pennsylvania State University Applied Research Laboratory Intelligent
Control Architecture (After: Lewis and Weiss, 04)

21

The most significant advantage of behavioral control is execution speed. Since

the system relies only on the current vehicle state and operates without regard to past

occurrences or future predictions, planning requirements are minimal. Whereas planning

algorithm computations generally run in polynomial time, world-state evaluation and

behavior selection can be executed in near-constant time. In addition, behavioral control

does not rely on any a priori world knowledge—another byproduct of the historical

independence. On the down side, behavioral control is not nearly as conducive to

complex tasks as hierarchical control. While the specific intent of a planning algorithm is

to decompose a complex task into a series of relatively simple steps, it is far more

difficult to design behaviors, or more specifically behavior activation criteria, to support

tasks of this sort (Stentz, 04). Nevertheless, the ability of vehicles utilizing behavioral

control to operate as part of a multi-vehicle system to accomplish complex tasking has

been demonstrated and behavior-based control remains an area of interest for

autonomous vehicle researchers (Lewis and Weiss, 04).

The observation that behavior initiation for vehicles utilizing behavioral control is

not governed by a script might make it appear that the proposed common data model is of

limited applicability to these vehicles. However, while the use of task-level behavior

scripts is not, on its face, relevant to behaviorally controlled vehicles, a common thread

among the more robust behavioral control vehicles is the requirement to specify what a

mission is intended to accomplish. It is primarily in this area that the proposed common

data model is potentially useful—by providing a tasking specification means for vehicles

utilizing any control paradigm, the model serves as a bridge between vehicles regardless

of the control paradigm utilized during both planning and execution phases of the

mission.

4. Hybrid Control
A final autonomous vehicle control methodology that attempts to capture the

advantages of the previously discussed paradigms while mitigating their disadvantages is

hybrid control. Whereas hierarchical control is inherently deliberative in nature and

behavioral control is inherently reactive, the hybrid control paradigm attempts to combine

the best of both by implementing hierarchical control at higher levels and behavioral

control at the lowest levels (Russell and Norvig, 03)(Stentz, 04). Higher levels, therefore,

22

contain global plans consisting of complex tasks and subtasks, while lower levels utilize

behaviors that are activated as required for the ordered completion of the ordered

subtasks.

Among hybrid architectures, implementations along the lines of the three-layer

architecture depicted in Figure 2.5 are the most common (Russell and Norvig, 03). In the

most general version of this model, the highest, or deliberative, layer transforms a

mission comprised of complex tasks into subtasks (e.g., a series of waypoints) that are

sent to an intermediate layer (referred to in the literature as the executive layer) for

sequencing and execution. In some cases, the deliberative layer may have multiple

sublayers that divide the complex tasks into increasingly simplified subtasks until a plan

of sufficient detail for executive layer processing is obtained. The executive layer is

responsible for activating and deactivating behaviors at the reactive layer in order to

execute deliberative layer directives. Additionally, the executive layer is responsible for

interpreting sensor data to maintain a world model that is utilized by the deliberative

layer during planning. The reactive layer interfaces with the vehicle’s control hardware

and implements behaviors that react to the local environment.

Figure 2.5. A Three-Level Hybrid Architecture for Autonomous Vehicle Control

The most significant advantage of a hybrid architecture is the ability to plan for

and execute complex tasks in a dynamic and uncertain environment without sacrificing

23

the low-level efficiency—deliberative and executive layer computations can proceed at

an appropriately slow pace while reactive layer behaviors provide rapid, real-time

response to the external environment. In this respect, hybrid control achieves a dual goal

of capturing the advantages and eliminating the disadvantages of both hierarchical and

behavioral control. This is a significant enough accomplishment that many control

architectures initially implemented in a purely hierarchical manner have evolved into

hybrid architectures (Albus, 96)(Albus, 98). A hybrid control architecture does, however,

retain hierarchical control’s dependence on the accuracy of the world model upon which

deliberative planning relies. (Stentz, 04)(Russell and Norvig, 03)

A common autonomous vehicle data model can be applied to the domain of

hybrid control in essentially the same way that is applied to hierarchical control. At its

most basic level, this consists of mappings and conversions between the ontology-

compliant data format and the hybrid control complex tasks and subtasks. This similarity

stands to reason since hybrid control does not differ substantially from hierarchical

control above the executive layer. Also applicable is the use of the data model as an

integral part of a multi-layer hybrid control architecture. In fact, the exemplar explored

in this research utilizes the exemplar data model in support of a hybrid control

architecture—specifically as the interface mechanism between the levels of the RBM.

5. The Rational Behavior Model (RBM)
As stated previously, the RBM is a three-layer hybrid architecture. First proposed

in (Kwak, et al., 92) and formalized in (Byrnes, 93), the RBM structure is designed to

roughly model the command hierarchy of a naval vessel as depicted in Figure 2.6. The

top RBM layer, referred to as the Strategic level, correlates to the vessel’s commanding

officer and is responsible for high-level decision making and mission flow. The middle

layer, the Tactical level, correlates to officer watchstanders (e.g., officer of the deck,

navigator, etc.) and is responsible for executing Strategic level directives and monitoring

vehicle systems. Finally, the lowest layer, the Execution level, has little decision-making

responsibility but provides the interface with the vehicle’s control and sensor systems.

This level of the architecture correlates to the junior members of the naval vessel watch

team.

24

At the Strategic level, vehicle tasking is expressed as a set of inference rules that

describe the goals of the mission and define a search space that breaks the goals into

subgoals that directly equate to vehicle behaviors that are issued as orders to the Tacitcal

level. The RBM Strategic level, therefore, can be viewed as a theorem prover that

executes the specified mission through side effects of the inference process (Byrnes, 93).

Figure 2.6. The Rational Behavior Model (RBM) Architecture that uses the Control

Paradigm of Naval Vessels as its Basis (After: Byrnes, 93)

Alternatively, the Strategic level can be viewed as a finite state machine where

individual goals correspond to states and transitions are executed upon success or failure

of the corresponding goal. This second view closely matches the declarative mission

specification of the exemplar data model developed in the conduct of this research.

Similarly, behavior orders issued to the Tactical level equate to data model task-level

behaviors. These similarities are exploited in the extension and implementation of the

RBM described in Chapter VII.

C. SYSTEM AND PLATFORM-INDEPENDENT LANGUAGES

1. Common Control Language (CCL)
CCL is a research project by the Naval Undersea Warfare Center, University of

Massachusetts, and the Autonomous Undersea Systems Institute that is similar to the

common data model proposed by this research in scope and intent but differs

significantly in implementation. As with the common autonomous vehicle data model

developed here, the intent of CCL is to provide a command language suitable for the

25

control of arbitrary vehicles or systems of heterogeneous vehicles (although CCL is

intended only for UUVs). Also like the common data model, CCL constructs are

available both for the development of vehicle tasking prior to launch as well as for in-

mission inter-vehicle communications.

Building upon previous efforts to develop a common UUV command and control

language (Blidberg, 94)(Turner and Chappell, 95)(Buzzell, 04)(Komerska, et al., 99-1),

CCL is based on predefined behaviors, each of which fall into one of nine classes (Figure

2.7). A CCL program defines a mission by specifying tasks. Each task is specified with

initialization parameters (points, parameters and initial values, authorized behaviors, and

available operators), a description of how and when the task is to be updated, a definition

of the task cost, and a goal definition for the task. Each task can be defined in terms of

subtasks or individual behaviors. A single mission level task statement is used as the top-

level mission definition. Since the available behaviors upon which all tasks are

ultimately based are vehicle independent, CCL missions can be defined for arbitrary

UUVs (Duarte, et al., 05).

Figure 2.7. Common Control Language (CCL) Behavior Classes and Example Instances

(From: Duarte, et al., 04)

Defining the mission, however, is only half the problem—it still has to be able to

run on the vehicle for which it is intended. CCL accomplishes this through the on-

26

vehicle installation of the CCL hybrid controller. This controller consists of a CCL

interpreter and an embedded planner and is used to generate vehicle-specific controller

commands. The planner, based on a form of process algebra referred to as cost calculus

($-calculus) that is specifically concerned with representing and manipulating concurrent

systems in a resource-constrained environment, uses kΩ-optimization to develop

appropriate behavior sequences (Eberbach, 01)(Eberbach, 05). A characteristic of kΩ-

optimization that makes it attractive for on-vehicle utilization is that it guarantees at least

a suboptimal solution regardless of allotted computation time (Duarte, 04).

The CCL controller runs in the Naval Undersea Warfare Center’s Distributed

Control Environment—a behavior-based software environment based on the University

of Southern California’s Ayllu system (Werger, 00) for concurrent systems that uses a

shared memory structure. The CCL hybrid controller also runs within the Distributed

Control Environment and utilizes the behavior specifications and an updated world model

(based on sensor data and potential input from other vehicles or human operators) to

develop plans that accomplish the tasking (Duarte, et al., 05). The current plan is used to

generate native controller commands that maneuver the vehicle and control its sensors as

illustrated in Figure 2.8.

Figure 2.8. The CCL Runtime Environment (After: Duarte, et al., 04)

27

Communication in CCL builds on (Turner and Chappell, 95) and the Foundation

for Physical Agents (FIPA) Communicative Act Library Specification (FIPA, 02). CCL

messages fall into one of two categories: request or inform. Request messages are used

to issue commands and query other vehicles for information. Inform messages are used

to propagate data and knowledge through the system. Messages include header and

scheduling information as well as a variable-length body and are designed so that a parser

does not need to backtrack. Messages can be used to transmit tasks, behavior definitions

or status information from one vehicle to another. (Duarte, et al., 05)

As with programs written in other languages, UUV missions defined with CCL

can become quite complex which can make them difficult to read, author and debug.

This implies that a graphical user interface for the development and testing of CCL

missions might be advantageous and two such graphical user interfaces are currently in

development. The first is being developed in conjunction with CCL itself and is designed

to generate missions for single vehicles (Duarte, et al., 05). The second, the Autonomous

Systems Monitoring and Control system is designed for the development of multi-vehicle

missions (Mupparapu, et al., 04). Additionally, the Autonomous Systems Monitoring and

Control system provides facilities for communicating with vehicles and monitoring

mission progress at run time.

The most significant advantage to CCL is its inherent support for arbitrary UUVs.

The predefined behaviors through which arbitrary vehicle support is achieved are

conceptually similar to the task-level behaviors of the exemplar data model developed in

the course of this research. Additionally, communication and coordination is simplified

by the fact that all vehicles utilize the same CCL controller. The main disadvantage is

the requirement to install the CCL controller on each vehicle. On-vehicle CCL

implementation is simplified through the vehicle-specific implementation of CCL

behaviors (i.e., software modules that convert CCL behaviors into vehicle-specific

control orders) and a “bridge” behavior that provides an interface between the CCL

controller and the vehicle’s existing control software (Duarte, et al., 05).

2. Compact Control Language (C2L)

C2L is a project of the Woods Hole Oceanographic Institution Oceanographic

Systems Laboratory that, like CCL and AVCL, is intended to facilitate dissimilar vehicle

28

interoperability. Its focus, however, differs in that it is concerned primarily with

communications—its purpose is to serve as a language between UUVs whose

communications paths are generally limited to low-bandwidth acoustic modems. C2L is

currently the basis for acoustic communication of the Hydroid REMUS UUVs, but is

intended to be generic enough to apply to arbitrary UUVs. C2L is presently mandated as

the acoustic communications protocol to be used among UUVs within the Office of

Naval Research Very Shallow Water / Surf Zone Mine Countermeasure program (Duarte,

et al., 05), and has been implemented on a number of swimming and crawling UUVs in

addition to REMUS (Stokey, et al., 05).

At the time of this writing, the current C2L specification consisted of 21 message

types (Stokey, 05). The message structure is designed around the capabilities of the

Woods Hole Oceanographic Institution acoustic modem set (variants of which are

commonly installed on many UUVs), so C2L message size is restricted to the 32-byte

packets of the modems. Since C2L is specifically intended for bandwidth-limited

communications paths, an effort was made to capture a significant amount of information

in the smallest message possible. The 32 bytes of a C2L message packet can contain

multiple submessages as shown graphically in Figure 2.9. This is typically accomplished

by using simple compression algorithms to on individual data elements. Latitudes and

longitudes, for instance, are represented with bytes to within several meters resolution

(Stokey, et al., 05). Packet size notwithstanding, C2L message length is not specifically

limited to 32 bytes, but while the potential exists for multiple-packet messages, at present

none have been implemented (Stokey, 04).

Not surprisingly, C2L is capable of transmitting vehicle status information along

the lines of position and heading, environmental sensor information such as bathymetry

and salinity, as well as short text or error messages. Additionally, various command and

control communications are available to allow run-time mission modification or the

issuance of specific control commands (start, abort, etc.). Finally, since substantial

Woods Hole Oceanographic Institution UUV research has focused on the utilization of

UUVs in mine countermeasure operations, C2L has predefined messages for the

transmission of mine countermeasure data and reports. Specifically, C2L defines

messages that encapsulate Computer-Aided Detection / Computer-Aided Classification

29

data. The Computer-Aided Detection / Computer-Aided Classification system is used for

automatic detection and classification of mine-like objects based on raw sonar data. It

can be installed on a UUV to provide for in-mission classification and decision making or

utilized for post-processing of UUV data files (Dobeck, et al., 04).

Figure 2.9. A Compact Control Language (C2L) Message Containing Computer Aided

Detection / Computer Aided Classification Mine Countermeasures Data
(After: Stokey, 04)

A potential disadvantage of C2L is that vehicles must be programmed to utilize it.

This inhibits the ability of C2L-capable vehicles to interoperate with vehicles that are not

C2L-capable. Additionally, a number of messages in the C2L vocabulary are tailored

around the capabilities of specific vehicles and the data that these vehicles collect. The

Redirect message, for instance, closely matches the REMUS command directing a lawn-

mower-like coverage pattern over a specified survey area. Developers interested in

implementing C2L for specific vehicles are required to coordinate with the C2L

developers to extend the message set (changes to existing messages are not allowed) to

support their specific vehicle requirements (Stokey 05). In order to facilitate the

operations of heterogeneous vehicle systems, the C2L specification does not allow

“partial compliance”— vehicles that can interpret the entire C2L message set are

compliant and vehicles that cannot are noncompliant. It is also assumed that if any

participants in a particular operation are using extensions to the existing message set, all

participating vehicles will be able to interpret these messages as well (Stokey, 05).

30

While theoretically suitable for arbitrary autonomous vehicles, these constraints

mean that C2L is not inherently applicable outside the set of vehicles that have

implemented it. Nevertheless, as with vehicle-specific data formats, the C2L semantics

can be captured by a common data model and previously discussed methods of

automated translation can be utilized to extend the compatibility of C2L beyond the set of

implementing vehicles.

3. Joint Architecture for Unmanned Systems (JAUS)

a. JAUS Overview
Although not a platform-independent language along the lines of CCL and

C2L, JAUS provides another example of relevant current research. Acknowledging the

advantages of a standard open architecture in the cost-effective development and

procurement of unmanned vehicles for military applications, the Joint Robotics Program

has listed the definition and evolution of such a system as a priority in its Unmanned

Vehicle Master Plan and also endorsed JAUS toward this end (JRP, 04). JAUS provides

a framework for the logical organization of vehicle modules and also for how they

interact. A JAUS system includes both the system’s hardware and software.

Among the stated JAUS objectives are support for all classes of unmanned

vehicles and interoperable unmanned systems—two design objectives which this research

attempts to address (JAUS, 04-1). Also similar to those of the common autonomous

vehicle data model are the philosophical underpinnings of JAUS: platform, mission,

computer resource, technology, and operator-use independence (JAUS, 04-1).

b. JAUS System Topology
A JAUS topology is defined in terms of a system, subsystems, nodes,

components, and component instances hierarchically arranged as depicted in Figure 2.10.

A system is a logical grouping of one or more subsystems that gain a cooperative

advantage by being grouped together (JAUS, 04-2). A JAUS system, for example, might

consist of an operator control unit for an unmanned system or a mission planning

application for an autonomous system, one or more vehicle subsystems, and possibly

support subsystems (e.g., signal repeaters).

Each JAUS subsystem is a distinct unit that operates as an independent

entity within the framework of the system. An individual vehicle is considered a

31

subsystem within a JAUS system so it is this level of the topology with which this work

is primarily concerned. JAUS messages are the sole means of communication between

subsystems.

Figure 2.10. Joint Architecture for Unmanned Systems (JAUS) Topology for Unmanned

System Design and Implementation (From: JAUS, 04-2)

A JAUS node contains hardware and software necessary to support a

single well-defined capability. In general, the division of a subsystem into nodes is up to

the designer, but an autonomous vehicle subsystem divides logically into nodes such as

master controller, navigator, and vision processor. Each node is logically self contained

and includes both the hardware and software required to implement the intended

capability. As with subsystems, nodes communicate exclusively via JAUS messages.

Components are the lowest level of the JAUS topology and comprise the

software building blocks of nodes, subsystems and systems. Typically implemented as

an executable task or process, a component is a software unit that provides one or more

services. Unlike the functionality and organization of subsystems and nodes, which are

determined by the system designer, the JAUS Reference Architecture defines a fixed set

of components that can be used arbitrarily within nodes (including multiple instances of a

component) to achieve the desired functionality (JAUS, 04-2).

c. JAUS Components
While the component-level architecture of vehicle systems is somewhat

outside the scope of this research, JAUS components and JAUS communications are

closely enough related to make a brief discussion of components worthwhile. As stated

previously, a component is intended to provide a single cohesive function. Additionally,

32

components are intended to be self contained in order to minimize communications

bandwidth requirements (JAUS, 04-2). Components are divided into five functional

groupings: command and control, communications, platform, manipulator, and

environmental sensor. A JAUS component specification includes a unique component

identification and a functional description (Table 2.1). The component’s grouping

determines which JAUS messages a component must respond to and in what manner.

Component ID Group Function

System Commander 40 Command and
Control Responsible for overall system control

Subsystem Commander 32 Command and
Control Responsible for overall subsystem control

Communicator 35 Communication Responsible for all communications into or out of a
subsystem

Global Pose Sensor 38 Platform Maintains the global six degree of freedom posture of
the vehicle

Local Pose Sensor 41 Platform Maintains a local coordinate system posture of the
vehicle

Velocity State Sensor 42 Platform Maintains vehicle linear and angular velocity

Primitive Driver 33 Platform Controls vehicle motion without external reference

Reflexive Driver 43 Platform Adds external reference (safety, obstacle avoidance,
etc) to primitive driver control

Global Vector Driver 34 Platform Controls linear and angular velocity relative to a world
reference frame

Local Vector Driver 44 Platform Controls linear and angular velocity relative to a fixed
body reference frame

Global Waypoint Driver 45 Platform Drives vehicle to a global reference frame waypoint

Local Waypoint Driver 46 Platform Drives vehicle to a waypoint relative to the current
vehicle posture

Global Path Segment Driver 47 Platform Drives the vehicle along a Bezier spline defined in
global coordinates

Local Path Segment Driver 48 Platform Drives the vehicle along a Bezier spline defined in
vehicle body coordinates

Primitive Manipulator 49 Manipulator Controls an articulated manipulator

Manipulator Joint Position Sensor 51 Manipulator Maintains manipulator rotational and prismatic joint
position information

Manipulator Joint Velocity Sensor 52 Manipulator Maintains manipulator rotational and prismatic joint
velocity information

Manipulator Joint Force / Torque
Sensor 53 Manipulator Maintains manipulator rotational joint torque and

prismatic joint force information

Manipulator Joint Positions Driver 54 Manipulator Controls manipulator rotational and prismatic joint
positioning

Manipulator End Effector Pose
Driver 55 Manipulator Controls the six degree of freedom posture of a

manipulator end effector

Manipulator Joint Velocities Driver 56 Manipulator Controls manipulator rotational and prismatic joint
velocities

Manipulator End-Effector Velocity
State Driver 57 Manipulator Controls the linear and angular velocity of a

manipulator end effector
Manipulator Joint Move Driver 58 Manipulator Controls manipulator joints through a specified path
Manipulator End-Effector Discrete
Pose Driver 59 Manipulator Controls manipulator end effector through a specified

path

Visual Sensor 37 Environment
Sensor Controls a vehicle visual sensor (camera, sonar, etc.)

Range Sensor 50 Environment
Sensor Controls a vehicle range sensor (sonar, laser, etc.)

Table 2.1. The Available JAUS Components for use in Implementing Unmanned
Vehicle Functionality (After: JAUS, 04-2)

33

The command and control component group is fairly self explanatory—

these components implement the higher-level logic required for mission planning and

control of subsystems, nodes or components for which they are responsible. Available

command and control components are the System Commander and Subsystem

Commander. For obvious reasons, these components are allowed to exchange messages

of any type with other components as required. Since it is within these components that

higher-level vehicle control is implemented, it is primarily here that the mission-

specification aspects of a common data model are most relevant. It is worth noting that

JAUS does not specify how a mission is to be represented or what type of control an

autonomous vehicle is to utilize. However, it appears that the platform, manipulator and

environment sensor components are well-suited to task-level behaviors that have been

converted to JAUS messages.

The communications component group consists of a single Communicator

component. The role of this component is to provide the single point of communications

access to a subsystem. This implies that a JAUS-compliant communications-capable

vehicle has a single Communicator component that manages all external data links and

communications paths as indicated in Figure 2.11. Subsystem-to-subsystem

communication within a JAUS system is unmediated, with each subsystem’s

Communicator component responsible for processing all received or transmitted

messages appropriately. As with command and control components, the Communicator

component can exchange any JAUS message with other components as required, but will

normally exchange messages only between other components of its own subsystem and

Communicator components of other subsystems. Upon message receipt, the

communications component of a specific subsystem forwards the information to other

components within the subsystem for action as required.

The platform, manipulator and environment sensor components are

ultimately responsible for implementing the low-level functionality of any JAUS-

compliant vehicle. The available components are listed in Table 2.1 and must be

implemented in accordance the JAUS Reference Architecture (JAUS, 04-2). Because of

the more limited scope of their functionality, components within these groups have more

34

limited communications functionality and are required to react in certain ways upon the

receipt of certain messages pertaining to their functionality.

Figure 2.11. The JAUS Communicator Component Functionality at the Architecture’s

Subsystem Level (From: JAUS, 04-2)

d. JAUS Messaging
When discussing the compatibility of individual vehicles in the context of

JAUS, the primary area of concern is messaging—inter-vehicle compatibility from a

JAUS standpoint rests on messaging at the subsystem (i.e., vehicle) level and does not

rely on JAUS compliance of the internal architectures at the node and component levels.

That is, two vehicles are operationally compatible if they can exchange JAUS messages

in accordance with the Reference Architecture regardless of whether or not their internal

architectures are JAUS compliant. For this reason, the most important aspect of aligning

a common autonomous vehicle ontology or data model with JAUS is capture of the

relevant messaging semantics. If the data model can be aligned with JAUS, the methods

previously discussed can be used to automatically translate between JAUS messages and

other message formats to facilitate interoperability of JAUS compliant and non-JAUS

compliant vehicles. For this reason, a brief discussion of the format and content of JAUS

messages is relevant.

By necessity data formats for use in JAUS messages are explicitly defined

(Table 2.2). Additionally, the encoding of many vehicle characteristics is rigidly defined

as well, however this does not lead to incompatibility with other systems or with a

35

common data model utilizing a different encoding. For instance, platform orientation in

JAUS is defined by Euler angle rotations about an earth-fixed reference frame (X north,

Y east, Z down)—ψ radians about Z, θ radians about Y, and φ radians about X, however

this is equivalent to identical rotations performed in reverse order about vehicle body

fixed coordinates (X forward, Y right, Z down) and can be equivalently expressed using a

quaternion or rotation matrix representations as well (McGhee, et al., 00).

Data Type Size (in Bytes) Representation

Byte 1 8 bit unsigned integer
Short Integer 2 16 bit signed integer
Integer 4 32 bit signed integer
Long Integer 8 64 bit signed integer
Unsigned Short Integer 2 16 bit unsigned integer
Unsigned Integer 4 32 bit unsigned integer
Unsigned Long Integer 8 64 bit unsigned integer
Float 4 IEEE 32 bit floating point number
Long Float 8 IEEE 64 bit floating point number

Table 2.2. The JAUS Numerical Data Types (After: JAUS, 04-3)

As with components, JAUS specifies a finite set of available messages and

explicitly defines their format, content and meaning. JAUS also provides a means of

implementing user-defined messages for application-specific requirements. Available

messages have a unique two-byte command code that is included within the message

header and fall into one of seven classes (as of version 3.2, JAUS messages are defined

for the Command, Query and Inform classes). Each message within a class also has a

subgroup designation corresponding to the component group to which the message

applies (or core if it applies to all component groups). Messages that are applicable at the

JAUS system level are listed in Tables 2.3 and 2.4.

Each JAUS message has a 16-byte header arranged in 12 fields as shown

in Figure 2.12. Of these fields the version, service connection flag, experimental flag,

data flag, and reserved fields are either fixed or not yet implemented in JAUS.

Additionally, since the common data model is concerned with inter-vehicle (subsystem

level) as opposed to intra-vehicle (node and component level) communications, the node,

36

component, and instance portions of the source and destination ID are fixed as well (1, 35

and 1 respectively). Finally, since the maximum length of 4080 for a single JAUS

message is sufficient for currently envisioned common data model messages, the

sequence number field can also be assumed to be fixed. Of the fields that require

consideration during conversion between the common data model and JAUS, the contents

of the priority level, acknowledge / no-acknowledge, command code, source ID and

destination ID fields are explicitly encapsulated by elements of the common data model

and message size can be computed when the JAUS message is constructed. Required and

optional data corresponding to each command code is specified in (JAUS, 04-4) and is

appended to the end of the JAUS message header.

Message Code Subgroup Description

Set Component Authority 0000h Core Sets the component authority relative to others in the
system [0..255]

Shutdown 0002h Core Shuts down the receiving component

Standby 0003h Core Causes the component to suspend operation (if active)

Resume 0004h Core Causes the component to resume operation (if
suspended)

Reset 0005h Core Causes the component to reinitialize

Request Component Control 000Dh Core Sender is asserting authority over the receiver

Release Component Control 000Eh Core Sender is releasing authority over the receiver

Confirm Component Control 000Fh Core Sender accepts or refuses to grant requested control to
receiver

Set Time 0011h Core Sets the current time and date

Set Data Link Status 0200h Communications Enables or disables external data links

Set Wrench Effort 0405h Platform Sets vehicle propulsive and / or braking effort for up to
six degrees of freedom

Set Global Vector 0407h Platform Sets the commanded vehicle speed, altitude, and
posture

Set Travel Speed 040Ah Platform Sets the commanded vehicle forward speed

Set Global Waypoint 040Ch Platform Commands one or more waypoints (latitude, longitude
and elevation)

Set Joint Positions 0602h Manipulator Commands revolute and prismatic joint settings for a
manipulator

Set Joint Velocities 0603h Manipulator Commands revolute and prismatic joint velocities for a
manipulator

Set End Effector Pose 0605h Manipulator Commands a manipulator end effector position and
orientation

Set End Effector Velocity State 0606h Manipulator Commands a manipulator end effector angular and
linear velocity

Set Camera Pose 0801h Environment Commands an orientable sensor's posture for up to six
degrees of freedom

Table 2.3. The JAUS Command Class Messages for Directing Unmanned Vehicle
Actions (After: JAUS, 04-2)

37

Query and Inform Messages Code Subgroup Description of Data Requested
Query Component Authority
Report Component Authority

2001h
4001h Core Component's currently assigned authority [0..255]

Query Component Status
Report Component Status

2002h
4002h Core Vehicle's current operational status

Query Time
Report Time

2011h
4011h Core Current timestamp

Query Data Link Status
Report Data Link Status

2200h
4200h Communications Status of external communications links

Query Heartbeat Pulse
Report Heartbeat Pulse

2202h
4202h Communications External communications check

Query Platform Specifications
Report Platform Specifications

2400h
4400h Platform Vehicle characteristics (max, min velocity, etc.)

breakdown
Query Global Pose
Report Global Pose

2402h
4402h Platform Vehicle's current latitude, longitude, and altitude

Query Velocity State
Report Velocity State

2404h
4404h Platform Vehicle's current linear and angular velocity

Query Wrench Effort
Report Wrench Effort

2405h
4405h Platform Vehicle's current propulsive and braking level of effort

in six degrees of freedom
Query Global Vector
Report Global Vector

2407h
4407h Platform Vehicle's current speed altitude and posture

Query Travel Speed
Report Travel Speed

240Ah
440Ah Platform Vehicle's current forward speed

Query Global Waypoint
Report Global Waypoint

240Ch
440Ch Platform Currently commanded waypoint list

Query Manipulator Specifications
Report Manipulator Specifications

2600h
4600h Platform

Number of joints, link lengths, twist angles, offset or
joint angles, min and max values for joints of a
manipulator

Query Joint Positions
Report Joint Positions

2602h
4602h Manipulator Current values of the manipulator joints

Query Joint Velocities
Report Joint Velocities

2603h
4603h Manipulator Current velocities of the manipulator joints

Query Tool Point
Report Tool Point

2604h
4604h Manipulator Current position and orientation of manipulator end

effector
Query Camera Pose
Report Camera Pose

2800h
4800h Environment Current sensor's posture in up to six degrees of

freedom
Query Relative Object Position
Report Relative Object Position

2802h
4802h Environment Range bearing and elevation (relative to vehicle) of a

sensor contact
Query Image
Report Image

2807h
4807h Environment Raw sensor data

Table 2.4. The JAUS Query and Inform Class Messages for Requesting and Providing
Unmanned Vehicle State Information (After: JAUS, 04-2)

Figure 2.12. JAUS Message Header Layout and Field Descriptions (From: JAUS, 04-3)

38

e. JAUS Summary
The purpose of JAUS is to provide an open architecture for the efficient

design and implementation of unmanned systems. It defines a component-based

message-passing architecture that system designers can utilize to build unmanned and

autonomous systems with improved interoperability. The portion of the JAUS Reference

Architecture most relevant to the development of a common data model is the finite set of

rigorously defined messages used to communicate between vehicles.

Although the focus of this section has been on what JAUS provides, also

noteworthy is what it does not provide. Specifically, while JAUS specifies the format of

individual commands (JAUS messages), it does not specify a format for a complete

mission specification. For unmanned systems, which to date make up the majority of

fielded and planned JAUS systems, there is no requirement for a mission specification

per se because the human operators directly control the system in accordance with their

understanding of what the mission is supposed to accomplish. In an autonomous vehicle

system, on the other hand, the Subsystem Commander component manages mission

progress with little or no human intervention. Individual commands, therefore, are likely

insufficient unless organized into a complete script. Additionally, since the JAUS

message set does not contain messages capable of commanding behaviors any more

robust than waypoint transit, JAUS is not inherently suitable for any autonomous vehicle

utilizing behavioral, hierarchical or hybrid control.

4. Joint Command Control and Communications Information Exchange
Data Model (JC3IEDM)

A conceptually broader common data model is the Multilateral Interoperability

Programme’s JC3IEDM. The Multilateral Interoperability Programme, currently a

voluntary collaboration composed of 26 nations, North Atlantic Treaty Organization Data

Administration Group, and Allied Command Transformation, is developing information

standards, processes and protocols necessary for international interoperability of

command and control information systems (MIP, 03-2). The centerpiece of Multilateral

Interoperability Programme efforts to date is the JC3IEDM which defines standard

elements of information that are passed between systems. Although the Multilateral

Interoperability Programme goals are significantly broader in scope than those of a

39

common autonomous vehicle data model, noteworthy similarities exist. Specifically,

both attempt to facilitate interoperability of dissimilar systems through data

standardization. Further, much information upon which command and control systems

rely closely mirrors that utilized by autonomous vehicles in both military and non-

military settings. In particular, the purpose of declarative mission definition using the

common autonomous vehicle data model is to specify the vehicle that is to be tasked,

where it is to operate and what it is expected to do (and not do)—concepts that are

rigorously captured by JC3IEDM. Inter-vehicle communications also deals with who,

what and where concepts that are central to JC3IEDM, particularly in event and contact

reporting. A potential conclusion to be drawn from this data similarity is that JC3IEDM

compatibility might be a desirable characteristic in a common autonomous vehicle data

model since it leverages the rigor of the existing data model and provides compatibility

with current and planned command and control systems.

As stated previously JC3IEDM is specifically designed to encapsulate data that is

transferred between command and control systems. Unlike JAUS, which explicitly

defines its entire messaging protocol, JC3IEDM is built around the organization of

essentially arbitrary data. JC3IEDM defines a relational data model wherein command

and control information is expressed in terms of entities and their relationships. The

model minimizes the ambiguity inherent in free form text by providing a fixed set of

enumerations for many data fields.

JC3IEDM can be described at three levels of abstraction. The conceptual data

model (with which this section is concerned) represents generalized concepts such as

actions, organizations and locations (MIP, 03-2). Increasing levels of detail are provided

by the logical data model which is concerned with entity attributes and the structure of

relationships and the physical data model which deals with the specific implementation of

compliant systems (MIP, 03-1).

In JC3IEDM entities are characterized as both object-type and object-item. An

object-type, as the name implies, is a generalized concept denoting a class of objects—a

Predator UAV is an example of an object-type entity. An object-item, on the other hand,

is a specific instance of an object-type, Predator UAV bureau number 165275 for

40

example. Object-types and object-items can be subdivided into the five sub-entities

shown in Figure 2.13. Each of these is further divided at least one more time into entities

such as aircraft-type (under material-type) or airfield (under facility). Objects can be

assigned relationships to other objects along the lines of belongs to, uses or is constrained

by via the object-type-establishment and object-item-association entities. Additionally,

each object can be assigned capabilities and status as required.

Figure 2.13. A Diagram of the Joint Command Control and Communications

Information Exchange Data Model (JC3IEDM) Conceptual Model Object
and Object Type (From: MIP, 03-2)

41

The basic entity for specifying a location in JC3IEDM is a point, which can be

specified in either absolute terms (latitude and longitude) or relative to another point.

The location portion of the JC3IEDM location entity structure (Figure 2.14) is more or

less independent from other portions, the exception being a potential one-to-many

relationship with object-item entities. Points can be combined to define line segments,

polygons and some surfaces, or utilized to implicitly define other surfaces and most

volumes. A point is also the basis for coordinate-system definition—particularly relevant

to the development of a common autonomous vehicle data model since it must support

vehicles whose position is maintained in relative terms as well as those utilizing absolute

positions.

Figure 2.14. A Diagram of the JC3IEDM Location Conceptual Model (From: MIP, 03-2)

The portion of JC3IEDM that is most relevant to the development of a common

autonomous vehicle data model is the methodology for specifying actions, since this is

central to the specification of mission requirements in a manner appropriate for the

42

application of planning algorithms. The basic structure of a JC3IEDM action is depicted

in Figure 2.15. Action-functional-association entities are utilized to specify sub-actions,

define dependencies, specify alternative actions and similar relationships between

actions. Action-temporal-association entities specify temporal relationships between

actions—when one action can be executed relative to another’s execution. Action-

objective entities are utilized to specify what objects make up the objectives of the action.

Figure 2.15. A Diagram of the JC3IEDM Action Conceptual Model (From: MIP, 03-2)

This cursory examination of a selected subset of JC3IEDM demonstrates the

inherent similarities between many aspects of JC3IEDM and a suitable common

autonomous vehicle data model. Subsequent chapters provide a more detailed

description of how this similarity can be leveraged to support interoperability between

autonomous vehicles and command and control systems.

D. SUMMARY
Various software architectures are currently utilized for autonomous vehicle

control. Examples include scripted control, hierarchical control, behavioral control, and

hybrid control. This research demonstrates how a common autonomous vehicle data

model can be designed in such a way as to be compatible with any of these and can be

used to improve the interoperability of vehicles with dissimilar control architectures by

enabling mission definition in the same manner regardless of vehicle control architecture.

43

Interestingly, there have been substantial recent research efforts in various areas

with goals similar to those of the common autonomous vehicle data model described

here. In particular CCL and C2L are being developed to support interoperability of

dissimilar UUVs, JAUS is being proposed as a design and implementation standard for

military unmanned vehicles, and JC3IEDM is attempting to standardize data relationships

inherent in command and control systems. A common autonomous vehicle data model

both complements and is complemented by these evolving technologies. Many

characteristics of JAUS and JC3IEDM in particular, are central to the design of the

exemplar data model and provide a mechanism through which systems utilizing these

methodologies can operate effectively with systems that do not.

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

III. EXTENSIBLE MARKUP LANGUAGE (XML) AND
APPLICABLE XML TECHNOLOGIES

A. INTRODUCTION—WHY XML?
Existing vehicle-specific and general-purpose autonomous vehicle data formats

and languages take a variety of forms. Most languages and data formats designed for

autonomous vehicle tasking are text based and can range in complexity from fixed-format

number sequences where each number’s meaning is implied by its location in the

sequence (e.g., NPS ARIES UUV waypoint lists) to more robust grammars along the

lines of the scripting language of the Hydroid REMUS UUVs. Autonomous vehicle data

formats intended for use in communications are more likely to be implemented as bit-

mapped binary messages. C2L and JAUS, for instance, are implemented using fixed and

variable length binary data packets respectively. Languages such as CCL which can be

utilized for both communications and pre-mission tasking can potentially utilize either

text or binary formats, however the exemplars discussed here are all text based.

The data model implemented in the course of this research is fairly unique in that

it is implemented with XML. (Hawkins and Van Leuvan, 03) makes a strong case for the

development and use of XML for autonomous vehicle tasking and interaction. The

authors base their argument primarily on XML’s platform independence and the ability to

translate XML to vehicle-specific formats using XSLT. (Neushul, 03) proposes the use

of XML in a broader array of military command and control applications and implements

a number of exemplars that rely heavily on XSLT to format data for disparate

applications. Included among the exemplars of that research is a proposed XML schema

and XSLT-based approach to UAV cooperation.

The proposed use of XML for the autonomous vehicle data model is not

surprising given the increasing use of XML in a broad array of applications. In fact, the

availability of numerous XML APIs, utilities, and tools has facilitated the development of

applications that completely insulate the end user the XML content itself. The end-

product data transparency provided by these applications has an important implication for

autonomous vehicle systems. Specifically, XML enables the development of vehicle

support systems that do not require any level of programming proficiency. Systems

46

along the lines of the AUVW described in Appendix B, for instance, provide for the

development and analysis of vehicle data by non-programmers and autonomous vehicle

novices. This capability is an important hurdle in the development of deployable

military, commercial and scientific autonomous vehicle systems since it allows vehicle

operation by experts in mission requirements and doctrine without the assistance of

autonomous vehicle or programming experts.

Ultimately, five specific aspects of XML that are directly or indirectly addressed

in these references make a compelling case for its use in the development of AVCL—

human and machine readability of instance documents, explicit structure and content

governance, document validation, automated conversion between AVCL and other data

formats, and the existence of standards and utilities that facilitate the implementation and

use of AVCL. The remainder of this chapter discusses each of these in more detail by

providing an overview of XML and its use in the development of AVCL.

B. XML OVERVIEW
XML was developed under the auspices of the World Wide Web Consortium

(W3C) to foster data exchange over the world wide web (the specific goals of the XML

language design team are listed in Table 3.1). A descendant of the Standard Generalized

Markup Language (SGML), XML is a metamarkup language (i.e., a markup language

without a fixed set of tags) that provides a rigorous means of adding descriptive

information (i.e., meta data) to data in order to improve its readability and portability.

XML allows application designers to define tags and attributes for the domain of interest

that can be used to annotate data in a platform and application-independent manner. This

marked up data can then be parsed by standardized XML utilities for use in arbitrary

applications. Thus, XML itself is a language for writing other languages, especially data-

oriented languages.

The obvious advantages offered by the possibility of platform-independent, self-

describing data have led to much hype and speculation concerning the ability of XML to

revolutionize computing as we know it. A bit of reality, however, is in order—XML is

not a panacea. It is important to recognize not only what XML is, but what it is not.

XML, for instance, is not a programming language (although it can be used to implement

programming languages). Generally speaking, XML documents do not dictate actions,

47

they simply provide data to an application in a formal and predictable way. It is up to the

application designer to determine how to process the data. XML is also not a network

protocol, despite its ubiquitous use for data transfer on the internet. Finally, XML is not

a database and it is unlikely that it will replace more traditional database applications. In

short XML marks up data to make it more usable, but it does not inherently dictate what

to do with it, where it came from, who to send it to, or how to store it. If these limitations

are kept in mind, however, XML provides a powerful data management tool that can be

applied in a variety of ways. (Harold and Means, 02)

1. XML shall be straightforwardly usable over the Internet.
2. XML shall support a wide variety of applications.
3. XML shall be compatible with SGML.
4. It shall be easy to write programs that process XML.
5. The number of optional features of XML is to be kept to the absolute minimum, ideally zero.
6. XML documents should be humanly legible and reasonably clear.
7. The design of XML shall be formal and concise.
8. XML documents shall be easy to create.
9. Terseness in XML markup is of minimal importance.

Table 3.1. Extensible Markup Language (XML) Design Goals (From: W3C, 04)

Although it was specifically designed to be the language of the web, the

applicability of XML extends well beyond the confines of web-based applications.

Given the desirability of cross-application data sharing, it is not surprising that XML has

become an integral part of applications in domains too numerous to count. In relation to

this research, many of the XML design goals of Table 3.1 dovetail nicely with design

goals of AVCL. Specifically, the ability to support a variety of applications, ease of

processing, human legibility, and ease of document generation are implicit requirements

of a common autonomous vehicle data model. Of the remaining design goals, only the

explicit lack of any requirement for terseness seems contradictory to the goals of AVCL

due to the potential impact of bandwidth limitations on communications between and

with autonomous vehicles. Even this pitfall can be dealt with through the use of binary

or compressed XML as described later in this chapter.

XML encodes data in the form of a tree. Although the nature of the links between

tree nodes is not explicitly mandated, the relationship implied by the structure of an XML

document is composition; that is, the children of an XML element comprise all of the

48

sub-components of that element. The XML fragment of Figure 3.1, for instance,

illustrates a potential XML encoding of a UUV waypoint command. The waypoint

consists of a two-dimensional Cartesian point (which in turn consists of an X and a Y

coordinate), a depth and a speed. In this example the individual data values are expressed

as element values of the tree’s leaf nodes. Stemming from the concept of using XML to

“mark up” the actual data, this pattern is the more traditional and most common method

of expressing data in an XML document.

Figure 3.1. An Unmanned Underwater Vehicle (UUV) Waypoint Encoded in XML using

Element Values to Capture Data Values

Alternatively, data can be represented in an XML document using element

attributes as depicted in Figure 3.2. Traditionally, attributes have been used to provide

information about an XML element or its contained value (e.g., in the example of

Figure 3.1, attributes might be used to indicate units of measure) but not to express the

actual data of interest. In some applications, however, the XML is a part of rather than a

description of the data (e.g., the XML fragments of Figures 3.1 and 3.2 are self-contained

waypoint commands as opposed to descriptions of the contained numerical data). In

cases meeting this criteria, the use of attributes rather than element values to express data

is appropriate. XML Schema and the Extensible Three-Dimensional web graphics (X3D)

language (ISO and IEC, 04) , for instance, are widely accepted XML languages that

utilize this pattern.

Ultimately, the decision of whether to use attributes or element values is

somewhat arbitrary. In the case of AVCL, the decision was based on the nature of the

encoded data, readability, document size and ease of processing. Additionally, XML data

49

binding and the heuristics by which data is bound to programming objects also weighed

heavily in the decision to use attributes rather than element values.

Figure 3.2. An Alternative XML Encoding of a UUV Waypoint with Data Values

Expressed using Attributes

C. XML SCHEMA AND DOCUMENT VALIDATION
Beyond requiring a document to be well formed (i.e., all elements require start

and end tags and all child elements must start and end inside the parent’s start and end

tags), the XML specification (W3C, 04-1) places very few constraints on the structure

and content of an XML document. Element and attribute names are completely arbitrary

(so long as XML naming conventions are observed), the document’s content tree can be

composed in any manner, elements can have any number of attributes, and elements and

attributes can be assigned any numerical or string value. While human operators might

reasonably decipher unconstrained XML documents when the element and attribute

names are well chosen, computational understanding of unconstrained XML is more

difficult. Advances in inference techniques and natural language understanding

notwithstanding, the task of programmatic interpretation of XML documents can be

greatly simplified if the document structure, content and semantics are known in advance.

Specifically, it is desirable to explicitly predefine aspects of the XML documents with

which the applications are to work (Duckett, et al., 01) including:

• Elements that can appear in the document.

50

• Attributes that can appear in the document, to which elements they apply,
and whether or not they are required.

• Which elements are child elements and which elements are potential root
elements.

• The type, number and order of child elements for each parent element.

• Data types and range restrictions for element and attribute values.

• Default and fixed values for elements and attributes.

In many cases an informal agreement on the XML structure and content is

sufficient. This is often true of XML that is intended for a single application or

application family when broader use of the XML is not anticipated. On the other hand,

when wide use is anticipated, a published standard is often necessary. XML Schema,

XSLT, X3D and most ontology description languages fall into this category. However

most XML applications, including the data model investigated by this research, fall into a

category somewhere between single-application and universal use. AVCL is potentially

applicable to a broad enough set of applications that an informal agreement on its content

and structure is insufficient, but its scope is narrow enough that a formal specification is

unduly cumbersome (it is worth noting that a formal specification is implicitly required

for all of the non-XML vehicle-specific languages investigated as part of this research).

In short, although a formal standard is not specifically required, the application of a

common data model to autonomous vehicle command and control does require a formal

mechanism for ensuring data correctness (both syntactic and semantic) and document

consistency.

Two mechanisms are available for programmatic constraint of the content and

structure of an XML document. XML initially relied on Document Type Definitions

(DTD). The main components of a DTD are a set of production rules that define all of

the permissible named elements and their content (i.e., child elements, text, etc.) and a set

of attribute lists delineating the attributes for each named element. Element production

rules are similar in style and functionality to the production rules commonly used to

define context-free grammars. Attribute lists, on the other hand, consist of the name of

the element to which the list applies and the attribute names, types and optional qualifiers

(e.g., to indicate that the attribute is optional or has a fixed or default value). (Hunter, et

al., 04)

51

Despite the fact that DTDs are still in common use, there are a number of

shortcomings that make them less than ideal for many XML applications (Duckett, et al.,

01). Among the DTD shortcomings are a small set of available data types that do not

map to data types of common programming languages and databases (e.g., floating point

and integer types), lack of an XML-based syntax, and cumbersome mechanisms for re-

use of existing markup constructs. Recognizing these shortcomings, the W3C developed

and published a recommended standard for XML Schema—a more robust method of

specifying the content and structure requirements of XML documents (W3C, 04-2)(W3C,

04-3). Unlike DTDs, a schema is composed with XML making it compatible with

existing XML utilities. Further, XML Schema is significantly more expressive than

DTDs, albeit at the cost of increased complexity. The increased power of XML Schema

enables designers to utilize more advanced techniques in specifying a content model and

also provides more control over document structure. XML Schema directly addresses

many of the shortcomings of DTDs and possesses a number of advantages that argue for

its use in developing a common autonomous vehicle data model (Duckett, et al., 01):

• Because schemas are written in XML syntax, they can be edited and
processed using any tool intended for use with XML documents.

• XML Schema directly supports most primitive data types used in common
programming languages and databases.

• XML Schema allows the definition of complex datatypes that extend or
constrain existing types.

• XML Schema contains class and type constructs that support re-use,
extension, and inheritance of existing markup constructs.

• XML Schema is more expressive than DTDs in constraining mixed
content elements (i.e., elements that can potentially contain text).

The advantages of XML Schema over DTDs are substantial enough that U.S. Department

of the Navy has recently directed that the use of schemas vice DTDs is required for all

forthcoming XML vocabularies and the conversion of existing DTD-constrained

vocabularies to XML Schema (DON, 05).

Once authored an XML schema or DTD is normally placed online at a well-

known location. Alternatively, a schema or DTD can be maintained locally if the

application does not have network access to an online copy as is often the case with

autonomous vehicles. Applications utilizing schema or DTD-constrained XML

52

documents automatically validate instance documents against the schema or DTD when

they are loaded. This capability is particularly important for applications that rely heavily

on data correctness and for which the consequences of invalid data are potentially severe.

autonomous vehicles clearly fall into this category—the time to recognize an invalid

document (i.e., an incorrect mission definition or message) is when it is loaded, not after

the vehicle has commenced a mission and the invalid data might result in operational

errors or vehicle loss.

Most applications and utilities that work with XML documents, including the

utilities described in this chapter upon which the proposed common autonomous vehicle

data model relies, automatically validate schema-governed documents as they are loaded.

The use of XML Schema, therefore, makes documents essentially self validating.

Coupled with the self-describing nature of a well-designed XML tag set, automatic

validation provides strong incentive for its use as the design mechanism for the common

autonomous vehicle data model. AVCL, therefore, has been formally specified using

XML Schema. An overview of the data model design is provided in Chapter IV and a

complete description of the implementation is provided in Appendix A.

D. XML PARSING

1. Introduction
A number of mechanisms for parsing XML documents are available to XML

application programmers, usually at no cost. In general parsers are capable of processing

arbitrary well-formed XML documents and do not rely on a schema or DTD. For

documents that are governed by a schema or DTD, parsers can validate documents as

they are loaded depending on the parser’s settings. Further, if an invalid document is

encountered, a validating parser is generally capable of identifying the location and

nature of invalid content. Parsers do not, however, interpret the document, so it is

incumbent upon the application programmer to process the parsed data appropriately.

The most common XML parsers provide API bindings for the Document Object

Model (DOM) and the Simple API for XML Parsing (SAX). While neither was utilized

extensively in the conduct of this research, they rate a brief description here for two

reasons. First, their widespread use and availability in most programming languages

make DOM and SAX potential candidates for XML parsing in applications that use the

53

common autonomous vehicle data model, including vehicles themselves. Second, DOM

and SAX parsers form the underpinnings of many of the more advanced utilities upon

which this research relies. The mechanics of DOM and SAX, therefore, influence what

these utilities can do and how they do it. At the very least they provide straightforward

examples of the two prevailing XML processing paradigms: use of the parser to develop

a parse tree that is retained in memory indefinitely, and use of the parser to trigger events

as it traverses the document without retaining anything in memory beyond the potential

side effects of the event handlers.

2. The Document Object Model (DOM)
The XML DOM is a specification published by the W3C that is currently on its

third version, designated DOM Level 3 (W3C, 04-4). Conceptually, DOM is fairly

simple. As a DOM parser traverses a document, it builds a content tree consisting of

various types of nodes along the lines of the example shown in Figure 3.3. The simple

document of the example specifies a single UUV waypoint as a two-dimensional

Cartesian coordinate and a commanded transit speed. The document uses attributes to

specify the waypoint command’s units of measure and element values to specify the

command parameters. The document also contains a single comment. The resultant

DOM tree contains a single Document node (at the root), Element nodes for each

document element, Text nodes for element values, Attribute nodes for each attribute, and

a Comment node for the example document’s lone comment. It is worth noting that the

value of a DOM element is maintained in a distinct object that is linked to the element,

but is not a part of the element itself. Also, attributes are associated with the elements to

which they apply, but they are not actually part of the tree (i.e., they do not have a parent

node and are not allowed to have child nodes). Finally, comments are parsed and

maintained in the parse tree along with the rest of the document.

In reality XML DOM has significantly broader applicability than XML parsing—

it is actually a robust API for processing XML documents. In the DOM API, all nodes

inherit from a common base node type and therefore have common characteristics and

methods. Additionally, each node type has characteristics and methods specific to its

subtype. Since the entire DOM tree is loaded into memory when a document is parsed,

the tree can be manipulated programmatically using the methods associated with the

54

various nodes. New nodes can be created and added to the tree and existing nodes can be

modified or deleted. In fact, the entire DOM tree can be generated programmatically

rather than loaded from an existing file. The ability to programmatically generate and

manipulate XML documents is perhaps DOM’s most significant asset.

Figure 3.3. A Graphical Depiction of an XML Document Object Model (DOM) Tree

Corresponding to a Simple XML Document Specifying a UUV Waypoint

The most significant disadvantages of DOM stem from the requirement to

maintain the entire document in memory. If documents are small, the associated

overhead is usually acceptable. However if documents are large, DOM can impose

unacceptable memory and time requirements, particularly if only a small amount of

information is to be extracted from a document or if multiple documents are to be loaded

(Hunter, et al., 04)

3. The Simple Application Programmer’s Interface (API) for XML
Parsing (SAX)

The most commonly utilized alternative to DOM is SAX. Originally published as

a Java API (but now available in a number of high-level programming languages), SAX

55

was not developed by and is not owned by any consortium, standards body or company.

Nevertheless, SAX has evolved into a de facto standard upon which numerous

applications rely (Hunter, et al., 04).

SAX is an event-driven parser. As the parser traverses a document, events

(partially listed in Table 3.2) are triggered as certain constructs are encountered. The

most common event types are those that are triggered when the parser encounters the

document beginning or end, element beginning or end tags, character data (i.e., the

element value) and whitespace. The parent application is responsible for reacting to

events based on the type of event that was triggered and its associated parameters (e.g.,

the element name and attribute values associated with a startElement event). Thus the

application is free to process events that are relevant and ignore ones that are not.

Event Description

StartDocument Event to notify the application that the parser has read the start of the
document.

EndDocument Event to notify the application that the parser has read the end of the
document.

StartElement Event to notify the application that the parser has read an element start
tag.

EndElement
Event to notify the application that the parser has read an element end
tag (will be fired immediately after the startElement event for empty
elements).

Characters Event to notify the application that the parser has read a block of
characters.

IgnorableWhiteSpace Event to notify the application that the parser has read a block of
whitespace that can probably be ignored.

ProcessingInstruction Event to notify the application that the parser has read a processing
instruction.

StartPrefixMapping Event to notify the application that the parser has read an XML
namespace declaration and that a new namespace prefix is in scope.

EndPrefixMapping Event to notify the application that a namespace prefix is no longer in
scope.

Table 3.2. A Subset of Available Event Types that are Triggered during Simple
Application Programmer’s Interface (API) for XML (SAX) Parsing

(After: Hunter, et al., 04)

Unlike DOM, once the parser completes its traversal, no document information is

maintained beyond any side effects of event processing on the part of the parent

application. For this reason, SAX’s memory requirements are significantly reduced in

56

comparison to those of DOM. Further, since the parser does not need to develop a

potentially large content map as it traverses the document, SAX can be significantly

faster than DOM (Means and Bodie, 02). The main disadvantage to SAX is that it is only

a parser and cannot be used to create or manipulate XML data.

Neither SAX nor DOM, therefore, is universally applicable. Each has advantages

and disadvantages that are more suitable for some applications and less suitable for

others. In general, SAX is preferable for processing XML streams or documents that can

be discarded once processed while DOM is preferable for processing XML documents

that are to be modified and for programmatically generating XML content.

E. XML DATA BINDING
SAX and DOM are usually acceptable mechanisms for parsing, generating and

manipulating fairly simple XML documents. In fact they provide the only well-known

API options for XML documents whose content is not constrained by a DTD or schema.

However, for documents with well-defined but complex content models, such as the

common autonomous vehicle data model proposed here, their use is cumbersome and

error prone. The generic nature of DOM and SAX mean that the application developer

must keep the entire content model in mind and explicitly account for every possibility

when writing software to process XML. Further, neither SAX nor DOM has support for

the data types with which developers are familiar. All attribute and element values in

SAX and DOM are strings, and their numerical or Boolean values must be parsed from

the string accordingly. Finally, SAX and DOM do not have the capability to detect even

simple programming mistakes (e.g., a misspelled element name). In many cases a

runtime exception will be thrown (often in a completely different portion of the

application than the actual mistake), but it is equally likely that the application will

simply not work correctly in some instances. This lack of error detection in SAX and

DOM can make troubleshooting extremely difficult.

Fortunately, a mechanism exists to more reliably and efficiently develop and

process XML documents that are governed by a schema or DTD, namely XML data

binding. Stated simply, XML data binding is the use of a schema or DTD to

automatically generate a customized API for the manipulation of compliant XML

documents (McLaughlin, 01). Schema-specific APIs allow the developer to work with

57

elements and attributes by name and data values by type. They also provide well-named

get and set accessor methods for the named elements and complex types. Naming and

typing conventions allow the compiler to detect many common errors (e.g., incorrect data

typing, misspellings, etc.) when the application is compiled, making them much easier to

trouble shoot. Finally, schema-specific APIs can preclude the generation of invalid

documents by enforcing compliance while the programming objects corresponding to a

document are being constructed, manipulated in memory, or written out.

As with other types of XML utilities, there are numerous data binders available

that produce APIs in a variety of programming languages. Output language and style

differences aside, the end products of most XML data-binding utilities are similar.

Application of a data-binding utility to a schema or DTD typically results in the

generation of a marshaller, an unmarshaller, a validator and a content-specific API

(McLaughlin, 02). The marshaller and unmarshaller are respectively used to generate

data-bound programming objects corresponding to XML documents and to serialize data-

bound objects back to XML. The validator is used to check the validity of data-bound

objects against the schema. Finally, the content-specific API contains all of the methods

required to access and manipulate data-bound objects. Additionally, the content-specific

API can be used to generate data-bound objects from scratch.

In practice, XML data binding is used as graphically depicted in Figure 3.4. The

XML data binder is applied to the schema to generate the marshaller, unmarshaller,

validator and content-specific API. A client application uses these products to load valid

XML documents into data-bound objects or generate them from scratch; access,

manipulate and validate data-bound objects; and write data-bound objects out as XML.

The application, therefore, never deals directly with the XML documents and

manipulates data-bound objects using the content-specific API. Additionally, neither the

application nor the data binder products require runtime access to the schema or data

binding utility. This has the advantage of enabling vehicle applications and remote

planners that may not have network access to the master schema to enforce document

validity offline.

58

Figure 3.4. A Graphical Depiction of the Interactions Between an XML Data Binding

Utility, the XML Schema, the Binder Products, XML Documents and a
Client Application

XML data binders use common-sense heuristics to map XML Schema or DTD

characteristics to classes in the output programming language. These heuristics provide

for consistent access to document elements and attributes. A summary of some mapping

heuristics of the data binding utility used in this research, Sun Microsystems’ Java

Architecture for XML Binding (JAXB), are provided in Tables 3.3 through 3.5.

Typical of most binders, JAXB maps XML Schema simple types to the closest

matching available type of the output programming language (in this case Java). In cases

where the schema and output language types are not perfectly aligned, such as the JAXB

mappings of XML unsigned integer types, the validator (and possibly the marshaller and

unmarshaller) are typically be responsible for ensuring assigned value compliance with

the schema. Complex XML types normally map to classes or interfaces in the output

language. Naming of the produced classes generally correspond to the name of the

element or complex type to which they correspond. Similarly, accessor methods are

59

typically generated with names that correspond to the name of the attribute or element

that they address. In cases where an element can have multiple children of the same

element type, a single accessor is normally generated that returns a linked list containing

all of the relevant child elements. List-manipulation methods of the output language are

then used to access and manipulate the individual elements. In programming languages

like Java, where the contents of a linked list can be of any type, the validator is

responsible for ensuring all elements in the list are of the appropriate type. In other

languages, however, the data-binding heuristics may be able to preclude list elements of

the wrong type.

Simple XML Types Java Type or Class Mapping
byte Maps to byte.
short Maps to short.
int Maps to int.
unsignedByte Maps to short. Range validation is the responsibility of the validator.
unsignedShort Maps to int. Range validation is the responsibility of the validator.
unsignedInt Maps to long. Range validation is the responsibility of the validator.
integer Maps to BigInteger.
float Maps to float.
double Maps to double.
decimal Maps to BigDecimal.
string Maps to String.
Boolean Maps to boolean.
Value-restricted
simple type

Maps to same Java primitive data type or class as the parent simple
type. Value validation is the responsibility of the validator.

Table 3.3. Java Architecture for XML Binding (JAXB) Heuristics for Mapping XML
Schema Simple Types to Java Types (After: Sun, 05)

Complex XML Types Java Mapping
Named element
(empty) JAXB-defined AnyType class.

Named element
(simple content) Maps to the Java type of the simple content.

Named element
(complex content) JAXB-defined class with the same name as the element tag.

Named complex type JAXB-defined class of the same name as the XML complex type.
Complex content
embedded in a parent
type or element

JAXB-defined subclass within the parent element or type class (e.g.,
ParentClass.SubClass).

Named group No type mapping, handled with accessor method mappings.
Table 3.4. JAXB Heuristics for Mapping XML Schema Complex Types to Java Classes

(After: Sun, 05)

60

Content Type Accessor Description
Element attributes
(user-defined value)

Get and set methods with the attribute name (e.g., setAttribute and
getAttribute) and a parameter or return value of the attribute type.

Element attributes
(fixed value)

Class variable with the attribute name (e.g. VARIABLE) and constant
value.

Element value
(text or numerical)

Get and set methods with the element name (e.g., setElement and
getElement) and parameter or return values of the element type.

Child elements
specified by name
(single instance)

Get and set methods with the child element name (e.g., getElement and
setElement) and a parameter or return value of the child element type.

Child elements
specified by name
(multiple instance)

Get method with a return value of the Java List type. List methods (e.g.,
get, add, remove, etc.) are used to access and modify elements. The
validator is responsible for ensuring the List contains only the
appropriate elements.

Child elements
specified by group
(single instance)

Get and set methods for each allowable element as defined by the
group. The validator is responsible for ensuring the content complies
with the group definition (e.g., choice, all, sequence, etc.).

Child elements
specified by group
(multiple instance)

Get method with a return value of the Java List type. List methods are
used to access and modify elements. The validator is responsible for
ensuring the List contains only appropriate elements and that the
content complies with the group definition.

Table 3.5. JAXB Heuristics for Schema-Governed XML Element and Attribute
Accessors (After: Sun, 05)

XML data binding is a powerful tool in the development of applications that

process DTD or schema-governed XML data. As such it is utilized extensively in this

research for the implementation of mission planning systems and vehicle controllers as

well as in the processing of various configuration files. Additionally, it is an integral part

of the translation mechanism for converting between data-model-compliant XML and

existing autonomous vehicle data formats (both bit-mapped binary and non-XML text).

The role of XML data binding in these conversions is discussed in detail in Chapter V.

F. EXTENSIBLE STYLESHEET LANGUAGE FOR TRANSFORMATION
(XSLT)
Among the most useful tools available to XML applications is XSLT.

Specifically defined for the purpose transforming one XML document into another

(W3C, 01), XSLT is by no means limited to this application. As demonstrated in

(Neushul, 03), it can be used effectively to convert XML documents into virtually any

text-based format containing the same information, or derivable information, as the

original XML document. Common uses for XSLT now include the generation of

61

documentation, graphics files (X3D, Scalable Vector Graphics, Virtual Reality Modeling

Language, etc.) and even program source code. Among web-based applications, XSLT

has evolved into the de facto standard for the transfer of data between applications

requiring different formats (Kay, 03), a process that is semantically identical to

transforming an XML document constrained by an autonomous vehicle data model to a

vehicle-specific format.

Although XSLT has been proven to be Turing complete (Holman, 02), it has a

number of characteristics that make it somewhat atypical among programming languages.

These are clearly illustrated by a quick examination of a few of XSLT’s design goals

(Tidwell, 01):

• An XSLT stylesheet is itself an XML document. This means that it can be
processed by a variety of XML utilities and can even be transformed by
another XSLT stylesheet.

• XSLT is a pattern-matching language wherein templates define the desired
output for matching source document constructs. XSLT programs are
declarative in style, as opposed to the imperative nature of Java, C, or C++
programs.

• XSLT is designed to be free of side effects meaning that the execution of
one template will not affect the execution of subsequent templates. The
most significant implication of this is that all variables are immutable—
once declared, the value cannot change.

• XSLT has only two branching constructs: if-then and choose-when-
otherwise. Neither construct is capable of inadvertently invoking an
infinite loop.

• XSLT has no looping constructs. Rather, it relies on iteration and
recursion to accomplish repetitive tasks.

From a mechanical standpoint, XSLT is actually composed of two specific

components. The first is the XSLT language itself which is comprised of 37 elements

that provide all of XSLT’s functionality. The second integral part of XSLT is the XML

Path Language (XPath), an expression language that is used to define criteria for template

matching and selecting nodes and values in an XML document. XPath consists of

functions that perform operations on or extract information about nodes, strings and

numbers; arithmetic and logical operators; a mechanism for specifying a search axis

(e.g., descendants, siblings, or ancestors of the current node); and a selection mechanism

for specifying which nodes, attributes and values meet the criteria of an expression.

62

XPath expressions are found in XSLT stylesheets as attribute values of elements

pertaining to template matching or expression evaluation.

The execution of an XSLT stylesheet progresses sequentially until it ends or more

commonly reaches an “apply-templates,” “call-templates” or “for-each” element. At this

point it evaluates any associated XPath expressions and perform the required actions on

each selection of the expression. Templates can be called by name but are more

commonly invoked when the current node matches the template’s XPath criteria. In

instances where more than one template matches the current node, only the template

corresponding to the most specific match is executed. Templates can be invoked from

within other templates with program flow ultimately dependent as much on the structure

and content of the source document as on the XSLT stylesheet.

Not surprisingly, the template-matching pattern of XSLT is tailor made for the

transformation of XML documents. XSLT’s use of immutable variables raises

difficulties when it is used to transform AVCL documents because of a requirement to

maintain up to date state information throughout the transformation. However, this

difficulty was overcome through the development of an XSLT pattern that uses template

parameters to mimic the functionality of mutable variables. In general, XSLT provides a

powerful mechanism for converting data-model XML documents to various vehicle-

specific formats and receives significant attention in Chapter V.

G. BINARY XML AND XML COMPRESSION
While the preceding discussion focused primarily on aspects of XML that support

its use in a common autonomous vehicle data model, XML documents have one

characteristic that provides a strong counter argument. As a rule the use of XML results

in documents that are significantly larger than non-XML representations of the same

data. Using AVCL for UUV mission results files, for instance, results in files that are

roughly two and one half times larger than space-delimited text files containing the same

data. When compared to binary data formats, the size increase is even more striking. An

XML-encoding of 21 common JAUS messages, for instance, results in up to a 60-fold

increase in size over the standard binary encoding. This document-size disparity is not

surprising since terseness was specifically excluded as an XML design consideration. In

63

the autonomous vehicle domain, the size of XML documents can impose potentially

prohibitive bandwidth and processing requirements.

In an effort to address the shortcomings of XML for certain applications, most

notably the processing, memory, and bandwidth requirements imposed by XML’s

intentional lack of terseness, the W3C recently established the XML Binary

Characterization Working Group. The goal of this working group is to explore the

feasibility and applicability of a binary XML format and ultimately to develop a binary

XML standard (W3C, 05). Binary XML is “a format which does not conform to the

XML specification yet maintains a well-defined, useful relationship with XML” (W3C,

05). Stated another way, a binary XML document is logically equivalent to an XML

document but does not comply with the XML specification. A key point is that it is

possible to unambiguously and reversibly convert between standard XML and binary

XML, preserving all relevant information.

The XML Binary Characterization Working Group efforts focused on

determining use cases and defining requirements for binary XML rather than the

development or endorsement of a particular standard. The proposed requirements include

a list of characteristics that binary XML must support and a list of characteristics that

binary XML must not prevent. The “must support” list consists of characteristics such as

platform neutrality, streamability and transport independence that are considered essential

to the success of binary XML (i.e., binary XML will be unable to meet the requirements

of the anticipated use cases if it does not exhibit these characteristics). The “must not

prevent” list includes characteristics such as processing efficiency, implementation cost

and forward compatibility that relate to binary XML’s utilization and growth.

The task of actually defining a standard binary XML encoding has fallen to the

Efficient XML Exchange Working Group, a follow-on to the XML Binary

Characterization Working Group. A number of binary XML formats are currently under

development with encoding strategies generally falling into one of two categories—

schema-based and non-schema-based. Schema-based encodings use information

contained in the schema to encode a document. Non-schema-based encodings, on the

other hand, rely solely on the content and structure of the document being encoded.

64

Regardless of whether a binary XML format is schema-based or non-schema-

based, the basic underpinnings normally involve the replacement of XML character

sequences with more efficient data types. At the center of both Fast Infoset (a non-

schema-based encoding method) (ITU, 05) and XSBC (a schema-based technique)

(Serin, 03), for instance, are a set of lookup tables that are used to replace tag and

attribute names, namespace prefixes and other common XML document constructs with

integer references. Both also replace character-based representations of numerical data

with more efficient representations such as the Institute of Electrical and Electronics

Engineers (IEEE) integer and floating point formats. Finally, both eliminate superfluous

content such as white space, end tags, quotation marks and other XML formatting

characters (e.g., ‘<’ and ‘>’).

Among the differences between schema-based and non-schema-based binary

XML formats are the method by which the lookup tables are generated and whether or

not the lookup tables are part of the binary XML document. Fast Infoset, typical of non-

schema-based techniques, can generate the lookup tables as a document is encoded and

most Fast Infoset documents include the tables at the beginning of the binary XML

document. Fast Infoset also allows the use of a reference to external lookup tables as an

alternative to including the tables in the document itself. This option is desirable for

encoding small documents since the lookup tables in these cases are large relative to the

rest of the encoding.

Schema-based encoding techniques provide the option of building lookup tables

before the document is parsed and saving them for future use rather than regenerating

them for each document that is encoded. Since lookup tables for schema-dependent

encodings are independent of the documents themselves (i.e., the lookup tables for all

documents complying with a given schema will be identical), the tables themselves do

not need to be included in the binary XML document but can be generated by the

application when the document is to be decoded.

Since schema-based encoded binary XML documents do not directly incorporate

the lookup tables, they have the advantage of smaller size (although this advantage

disappears if the non-schema-based encoding uses a reference to a set of external lookup

65

tables). This is particularly evident in the smaller documents of Figure 3.5, which

compares Fast Infoset and XSBC encodings of binary JAUS messages encoded as XML.

Relatively small binary messages (typically in the neighborhood of 20 bytes), the XML

encodings impose anywhere from a 25- to 60-fold increase in size (37.82 average). Fast

Infoset encoding of the XML results in only a small reduction in size, still 20 to 50 times

the size of the equivalent binary messages (30.31 average). Application of further

compression to the Fast Infoset documents results in only minimal improvement (still

22.18 average times larger than binary). The same documents encoded with XSBC show

significantly better results—from three to six times the size of the original binary

messages (4.63 average). Additionally, further compression of the XSBC-encoded

documents in this case produces only negligible improvement (4.57 average times

larger). Although these documents are still significantly larger than the original binary

messages, they are not so large as to preclude transmission over circuits typically used by

autonomous vehicles.

0

200

400

600

800

1000

1200

Set
Glob

al W
ayp

oint

Que
ry

Glob
al

W
ay

poin
t

Rep
ort G

lob
al

Way
po

int

Set
Glob

al V
ec

tor

Que
ry

Glob
al

Vecto
r

Rep
ort G

lob
al

Vec
tor

Set
Trav

el
Spe

ed

Que
ry

Trave
l S

pe
ed

Rep
ort T

rave
l S

pe
ed

Set
W

ren
ch

 E
ffo

rt

Que
ry

W
renc

h Effo
rt

Rep
ort W

re
nc

h Effo
rt

Set
Tim

e

Que
ry

Tim
e

Rep
ort T

im
e

Que
ry

Hea
rtb

ea
t P

uls
e

Rep
ort H

ea
rtb

ea
t P

uls
e

Que
ry

Glob
al

Pose

Rep
ort G

lob
al

Pos
e

Que
ry

Velo
cit

y S
tat

e

Rep
ort V

elo
cit

y S
tat

e

Shu
tdo

wn

AVERAGE

JAUS Message

M
es

sa
ge

 S
iz

e
(b

yt
es

)

XML Encoding
JAUS Binary
XSBC
XSBC + GZip
Fast Infoset
Fast Infoset + GZip

Figure 3.5. A Comparison of Fast Infoset and XML Schema-Based Binary Compression

(XSBC) of XML Encoded Joint JAUS Messages to the Standard Binary
Encodings and Uncompressed XML

As evidenced by Figure 3.6, the size advantage of schema-based encoding

techniques disappears with larger documents. This figure compares Fast Infoset and

XSBC encodings of large AVCL documents (7 to 30 megabytes in size). For comparison

purposes, the results are compared against space-delimited text documents containing

66

identical data. The AVCL documents are roughly two and one half times larger than the

space-delimited text documents, but application of either Fast Infoset or XSBC results in

documents that are smaller than the space-delimited text documents. Fast Infoset

provided slightly better compression with an average document size of 61 percent of the

space-delimited text (individual documents size ranged from 57 to 67 percent). XSBC

encoded document size averaged 72 percent of the equivalent space-delimited text (with

individual documents ranging from 66 to 76 percent). Further compression of either Fast

Infoset or XSBC results using GZip resulted in an average size of 14 percent of the

original space-delimited text (with individual documents ranging from 11 to 18 percent).

Interestingly, applying GZip to the space-delimited text resulted in documents that were

over twice as large as the GZipped binary XML.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Miss
ion

 1

Miss
ion

 2

Miss
ion

 3

Miss
ion

 4

Miss
ion

 5

Miss
ion

 6

Miss
ion

 7

AVERAGE

Fi
le

 S
iz

e
(M

b)

AVCL
Text
GZip of Text
XSBC
XSBC + GZip
Fast Infoset
Fast Infosest + GZip

Figure 3.6. A Comparison of Fast Infoset and XSBC Compression of Autonomous

Vehicle Command Language (AVCL) Mission Results Files

The preceding data points illustrate that binary XML has the potential to extend

the use of XML into domains for which it was previously unsuited. A rapidly evolving

field, the various methods for implementing binary XML have enough in common that in

all likelihood, they will coalesce into a universal standard sooner rather than later. Until

then, if binary XML is desirable, the requirements of the application can dictate which

encoding method to use, in particular whether to use a schema-based or non-schema-

based approach. For instance, if document size is an important factor and small

67

documents are to be encoded, it is probably advisable to use schema-based encoding (or

to use a non-schema-based strategy that allows an external reference to the lookup

tables). If only large documents are to be encoded, the decision is less critical, but non-

schema-specific encoding might provide a performance advantage since these strategies

do not parse an external schema. Obviously, if documents that are not schema-governed

are to be encoded, non-schema-based encoding is warranted (alternatively, a synthetic

schema can be generated based on the document content and structure).

H. SUMMARY
XML has a number of characteristics that make it potentially attractive for

developing a common autonomous vehicle data model. Among the most important XML

capabilities are the ability to rigorously constrain document structure and content through

the use of XML Schema and the related ability to automatically validate instance

documents as they are loaded, created or modified. Additionally, various standards are

readily available to facilitate the application of XML to the domain of interest. XSLT

and XML data binding in particular play an important role in the implementation of a

common autonomous vehicle data model. Finally, emerging binary XML capabilities

offer the promise of mitigating the one significant drawback to the use of XML in this

area—its size.

When viewed as a whole, the APIs, software packages, and utilities available to

the XML application programmer facilitate the development of easy-to-use applications

for the generating and processing XML documents of a specific type. These applications

are easily designed to validate document content and conduct error checking without

requiring the end user to use or even understand the underlying XML structure.

Considering that the potential users of autonomous vehicle systems are unlikely to

possess significant XML expertise, this is an important capability for any vehicle support

system that is intended for operational use. Thus, a compelling case can be made for the

use of an XML-based autonomous vehicle data model even before the ability to translate

content to other forms using XSLT is considered.

XML applications are most commonly written using the Java programming

language. The platform neutrality of Java mirrors that of XML, so it was only natural to

include robust XML processing in Java. Further, many of the XML utilities, standards

68

and applications that are utilized to support this research were designed and implemented

with Java in mind. Unfortunately, the platform neutrality of Java is not without cost.

Since Java byte code runs on a Java Virtual Machine instead of a computer’s native

processor, there is some overhead that can make Java applications less efficient than

those written in languages that compile directly to machine-executable code.

A number of parties are working on “real-time Java” as well as hardware and

software solutions to improve the efficiency of Java implementations. In time these

efforts may lead to increased acceptance of Java as an appropriate programming language

for real-time applications. For the time being however, developers still gravitate towards

the use of programming languages such as C and C++ to implement control software.

Fortunately, this does not stand as a barrier to the use of XML for an autonomous vehicle

data model. As the advantages of XML have become more obvious and XML has been

applied to a broader array of applications, the ability of languages other than Java to

process XML has improved significantly. In fact implementations for all of the utilities

and standards discussed in this chapter are available in a number of languages. Object-

oriented languages such as C++ in particular are quickly becoming XML-capable

(Arcineas, 02). Implementation languages, therefore, can be chosen on their own merits

without inhibiting the use of XML as described here.

69

IV. AUTONOMOUS VEHICLE COMMON DATA MODEL
DEVELOPMENT

A. DATA MODELS VERSUS ONTOLOGIES
Thus far the terms “data model” and “ontology” have been used more or less

interchangeably. Researchers in the semantic web, knowledge management and ontology

engineering fields will contend, however, that the terms imply similar but not quite

interchangeable meaning. Nevertheless, in practice, the distinction between what

constitutes a data model and what constitutes an ontology is nebulous at best. It is

worthwhile, therefore, to briefly compare and contrast the salient characteristics of data

models and ontologies in order to more precisely define what is being proposed and

implemented by this research.

A data model describes in an abstract way how data is represented in a business

organization, information system or database management system. A data model will

rigorously characterize the data structure and content of the domain that it conceptualizes.

Even so, the degree to which a model encapsulates semantics will depend on the

expressiveness of the modeling formalism and the design decisions of the modeler.

Generally speaking, the concept of a data model is significantly broader than that of an

ontology in that many ontologies might also be considered data models, but few data

models can also be considered ontologies.

Although there exist many computer ontology definitions, they tend to include a

number of common elements. It is generally agreed that an ontology is an “agreement

about a shared, formal, explicit and partial account of a conceptualization” (Guarino and

Giaretta, 95). At its core, an ontology contains the vocabulary, concept definitions and

relationships for a given domain. Part and parcel to any ontology, therefore, is the

definition of domain rules that restrict and characterize the semantics of concepts and

relationships. Further, for a data model to qualify as an ontology it must be machine

interpretable—that is, an application using the model must be able to infer the semantics

without a priori knowledge of the model (Daconta, et al., 03). Finally, it is assumed that

applications “commit to” the semantics of an ontology prior to using it (Spyns, et al., 02).

70

Although these definitions provide some qualitative insight into the difference

between a data model and an ontology, they do not effectively differentiate between the

two or definitively classify the exemplar developed in the course of this research as one

or the other. This common quandary has led a number of researchers in the field to use

rather arbitrary criteria to make the distinction. Some differentiate based on the intended

application domain—that is, data models apply to a single application or a single

application type while ontologies apply to any application that is interested in the

ontology’s domain (Gottgtroy, et al., 03)(Kalinichenko, et al., 03)(Jarrar, et al., 03).

Others might make the distinction based on the modeling formalism utilized. Entity-

Relationship and Extended Entity Relationship diagrams (Ramakrishnan and Gehrke,

03), Object Role Modeling (Halpin, 01), Unified Modeling Language (OMG, 05) and

XML Schema, for instance are used to develop data models, while the Defense Advanced

Project Agency (DARPA) Agent Modeling Language + Ontology Inference Layer

(DAML+OIL) (DARPA and IST, 01) and Web Ontology Language (OWL) (W3C, 04-5)

are used to develop ontologies.

Similar, but somewhat more subjective than using the intended application

domain as a classification criterion is the notion of “genericity.” This method of

classification assumes that in order to be sharable and usable by a broad array of

applications, ontologies must be more generic than data models which are not intended to

be universally sharable. (Spyns, et al., 02) proposes four characteristics relating to

genericity that can be examined to determine whether a particular model should be

considered an ontology. First is the operational level of the intended data that the

model’s rules constrain—do the rules apply at the implementation level (data types,

ranges, keys, etc.) or are they more abstract. The concept of expressive power refers to

the data-engineering language utilized by the model—the degree to which it is concerned

with defining structure and data integrity versus the ability to express meaningful

constraints and relationships. The third proposed measure of genericity is user purpose

and goal relatedness, a subjective assessment of the how much influence the intended use

of the model has on its design. Finally, the extendibility of the model (i.e., the ability to

add to or modify aspects of the model without impacting unrelated portions of the model)

is considered. It is worth noting that the authors of this paper are not proponents of large

71

monolithic ontologies defined with languages such as DAML+OIL or OWL, but prefer

the layered, highly compartmentalized approach described in the paper. Not surprisingly,

this method of ontology / data model differentiation tends to favor the authors’ preferred

method of ontology definition over others.

A final method of data-model classification that avoids these somewhat arbitrary

distinctions between data model and ontology utilizes a subjective scale along the lines of

the ontological spectrum of Figure 4.1 (Daconta, et al., 02). Here the goal is not

specifically to determine whether or not a data model can be considered an ontology, but

rather to assess the level of semantic richness of the model. All models classifiable on

the ontology spectrum can be considered ontologies to a degree, however models with

stronger semantics are more accurately classified as ontologies in the generally accepted

sense than those with weaker semantics.

Figure 4.1. The Ontology Spectrum (Weak to Strong Semantics) Demonstrating the

Relationship between Ontology Types and Expressive Power
(From: Daconta, et al., 02)

The right side of the ontology spectrum of Figure 4.1 provides examples of the

types of relationships that can be effectively expressed by a model locatable on that

72

portion of the scale with associated named model types (described in detail in (Daconta,

et al., 02)) on the left (in bold). The modeling languages on the left side of the scale are

not used to classify models but rather to indicate the semantic strength that the respective

languages are capable of expressing (e.g., a model expressed with DAML+OIL can be

semantically weaker than a model expressed using an Extended Entity Relationship

diagram despite the fact that DAML+OIL is significantly more expressive). Specific

models, therefore must be classified on their own merits as opposed to the merits of the

language in which they are defined.

The preceding discussion makes it clear that the distinction between a data model

and an ontology is somewhat subjective. It does, however, provide criteria by which to

evaluate the type of data model that is proposed by this research. Based on the arbitrary

criteria of application domain (autonomous vehicle command and control) and model

definition language (primarily XML Schema), AVCL does not qualify as an ontology.

Similarly, based on the four suggested measures of genericity, AVCL is more accurately

categorized as a data model than an ontology—its rules constrain implementation-level

data, XML Schema constrains data content and structure but does not explicitly address

semantics, the intended use of the model is the primary influence on its design, and the

extendibility of the model can be cumbersome since changes have the potential to

invalidate data instances that were previously compliant. Finally, AVCL is probably best

placed on the lower half of the ontology spectrum of Figure 4.1 due to the inability of

XML Schema to explicitly express the strong semantics required by the upper portion of

the spectrum in a machine interpretable manner. It is more accurate then to describe the

type of data model proposed by this research (with AVCL serving as the exemplar) as an

XML-Schema governed data model in the domain of autonomous vehicle command and

control than as an ontology in the same domain.

B. AUTONOMOUS VEHICLE DATA MODEL DEVELOPMENT

1. Overview
The development of a data model of the type proposed by this research will have

two primary influences. First are the research goals described in Chapter I. A suitable

data model must contain a declarative, goal-based mission specification capability and

associated goal set, a script-based, task-level mission specification capability and

73

associated task-level behavior set as well as an intervehicle messaging capability and

associated message set. The second driver of data model design is vehicle capability.

The task-level behavior and message sets must be compatible with the actual capabilities

of the target vehicles. Stated differently, it must be possible to express target vehicle

tasking and messaging using the data model’s task-level behavior and messaging

constructs respectively. Also, while not specifically required by the research goals, the

exemplar data model of this research incorporates a mission results sections to facilitate

post-mission data analysis. Since the data model is intended to encapsulate

implementation-level data, it requires well-defined data types, units and conventions at a

more basic level in order to achieve the granularity necessary to operate with actual

vehicles. The remainder of this chapter describes the implementation of these data model

attributes in the development of AVCL in order to illustrate design issues inherent in the

development of a data model of this sort.

2. Data Types and Conventions

a. Units and Conventions
The various command languages and data formats designed for real-world

vehicles normally use specific units of measure and explicitly defined conventions to

express and communicate vehicle characteristics and state parameters such as position

and posture. Since these vehicle-specific languages were designed around their

respective target vehicles, they typically do not have cross-vehicle compatibility in mind.

Therefore, the units of measure and other conventions often differ significantly from one

vehicle to another. Fortunately, conversion between the units of measure of different

vehicle-specific data formats requires only multiplication by a scaling factor (units of

measure utilized in AVCL are shown in Table 4.1). Reconciliation of most other vehicle-

specific data format conventions, while somewhat more complicated, does not pose any

great difficulty (Table 4.2 provides a summary of the conventions utilized in AVCL).

Among the more difficult conventions to resolve are the various methods

for expressing vehicle position and orientation. Available methods for specifying a

position (location on the face of the earth), for instance include Cartesian coordinates in a

fixed reference frame, latitude and longitude, Military Grid Reference System and

Universal Transverse Mercator grid, among others. Conversion between these

74

conventions can be tedious if a high degree of precision is required, but various

Geographical Information Systems and algorithms are available for this purpose. The

decision of which conventions to allow in the data model, therefore, can be left up to the

modeler without impacting the model’s applicability to any particular vehicle-specific

format so long as the Geographical Information System is utilized in the conversion

process between the vehicle-specific and common data models.

Measurement Unit Note
Linear Distance meters

Angular Distance degrees Used for heading, course, bearing, etc. but not
control surface deflection.

Linear Speed meters per second

Linear Speed knots Nautical miles per hour, used as a convenient
format for commanded speed.

Angular Speed degrees per second

Time seconds Can be relative to a fixed start time or current
time depending on context.

Table 4.1. Standard Units of Measure used throughout the AVCL Schema

In the case of AVCL the decision was made to allow positions to be

specified with Cartesian coordinates or latitude and longitude. Ultimately, positions

(including the vertical component) are placed in a right-handed, earth-fixed reference

frame with the positive X axis directed north, the positive Y axis directed east and the

positive Z axis directed down. Conversions between AVCL and vehicle-specific data

formats that use other coordinate systems require multiplication by a rotation matrix as

part of the conversion process. Other than this simple conversion prerequisite, the

decision to use this particular coordinate system carries no overhead (McGhee, et al., 00).

There are also a number of methods commonly used to specify orientation

including Euler angles, gimble angles, rotation matrices, angle / axis pairs, and

quaternions. Each of these methods has advantages and disadvantages, but as with

position, translation of an orientation specification from one format to another is not

difficult. A detailed discussion of many of the issues arising from the use of competing

coordinate system and orientation conventions can be found in (McGhee, et al., 00).

Therefore, the decision to use Euler angles in AVCL (based on the assumption that users

will find bank, pitch, and yaw more intuitive than other methods) does not inhibit the

75

compatibility of AVCL with any vehicle-specific method for specifying orientation.

Additionally, the use of Euler angles within AVCL does not preclude the use of another

method for encoding orientation at the application level.

Convention Description
Earth-Fixed
Coordinate System

Right handed three-dimensional system with the positive X axis directed
north, positive Y axis directed east and positive Z axis directed down.

Body (Vehicle)-Fixed
Coordinate System

Right handed three-dimensional system with positive X axis forward,
positive Y axis to the right, and positive Z axis out the vehicle bottom.

Horizontal Position Latitude / Longitude--signed degrees and decimal degrees.

Horizontal Position Cartesian Coordinates--(x, y) coordinate in the earth-fixed reference
frame.

Horizontal Position
Relative Position--displacement from the current vehicle's position in
earth-fixed coordinates (meters north and east of current vehicle
position).

Orientation
Euler Angles (bank, pitch, and yaw or Φ, θ and Ψ)--in order rotation about
the earth-fixed X, Y, and Z axes (or equivalently, in-order rotation about
body-fixed Z, Y, and X axes).

Linear Velocity
Meters per second rate of travel relative to the earth-fixed coordinate
frame .

Linear Velocity
Meters per second rate of travel relative to the body-fixed coordinate
frame .

Angular Velocity Degrees per second Euler angle rate .

Angular Velocity
Degrees per second rate of rotation about the body fixed coordinate
system .

UUV Vertical Position Depth below the surface.
UUV Vertical Position Altitude above the sea floor.
UAV Vertical Position Altitude above mean sea level.
UAV Vertical Position Altitude above ground level.
Actuator Setting Percentage of maximum actuator authority (possibly signed).

Table 4.2. Miscellaneous Conventions used in AVCL

b. Simple Data Types
Specifications for non-XML, vehicle-specific data formats must often

precisely define even simple data types. JAUS, for instance, mandates the use of the

eight integer types and two floating point types of Table 2.2, and also defines a method

for defining scaled integers where an integer data type is used as an index into a finite set

of real numbers occurring at fixed intervals between a lower and upper bound (JAUS, 04-

3). Additionally, the JAUS Reference Architecture must deal with byte ordering both of

individual data units and data streams. An XML-based data model, on the other hand,

makes much of the low-level data type definition unnecessary. Tables 4.3 and 4.4

()zyx ,,

()wvu ,,
()ψθφ ,,

()rqp ,,

76

contain descriptions of built-in primitive and derived data types respectively that can be

used by any XML Schema-governed data model. Rigorous definition of these data types

in the XML specification provides XML parsers, XSLT processors, XML data-binders,

XML binary encoders and other applications all of the information necessary to process

data instances. Further definition in the context of a particular data model is therefore not

required.

Subtype

Primitive Data
Type

Description

String Types string A finite-length sequence of characters.

 anyURI A standard internet uniform resource identifier
(URI).

 NOTATION Declares links to non-XML content and
associates it with an external application.

 QName A namespace-qualified XML name.
Encoded Binary Types Boolean true or false.

 hexBinary Binary data represented as a series of two-
character hex strings.

 base64Binary A binary encoding of a limited set of ASCII
characters.

Numeric Types decimal A floating point number of arbitrary precision.

 float An IEEE single-precision 32-bit floating point
number.

 double An IEEE double-precision 64-bit floating point
number.

Date / Time Types duration Specifies a duration in years, months, days,
hours, minutes and seconds.

 dateTime Specifies a specific time of day on a specific
Gregorian calendar date.

 date Specifies a Gregorian calendar date.
 time Specifies a time of day.

 gYearMonth Specifies the year and month of a Gregorian
calendar date.

 gYearDay Specifies the year and day of a Gregorian
calendar date.

 gYear Specifies the year of a Gregorian calendar date.

 gMonthDay Specifies the month and day of a Gregorian
calendar date.

 gMonth Specifies the month of a Gregorian calendar
date.

 gDay Specifies the day of a Gregorian calendar date.

Table 4.3. Predefined XML Schema Primitive Datatypes

The predefined data types available in XML Schema suffice for many

elements of most data models, but they are often insufficient for at least some model

77

elements. The use of XML Schema, therefore, does not normally absolve the modeler

from the responsibility of defining special simple data types to fit the requirements of the

various model domains. For numerical and date data, schema-defined data types usually

specify a continuous or discrete range of values. For string and encoded binary types, a

finite set of potential values is normally defined (referred to as enumeration values).

Base Primitive Type Derived Data Type Description

string normalizedString A string with each white space character replaced
with a space character.

 token
A string with leading and trailing white space
eliminated and internal white space reduced to
single space characters.

 language A natural language two or three character identifier
string.

 Name A valid XML 1.0 element or attribute name.

 NCName A valid XML 1.0 element or attribute name that
prohibits the use of the ':' character.

 ID A token that is used as a unique identifier for an
element.

 IDREF A reference to an element identified with an ID.
 IDREFS A space-delimited sequence of IDREFs.
 NMTOKEN Similar to NCName, but allows leading numbers.
 NMTOKENS A space-delimited sequence of NMTOKENs.

 ENTITY An NCName that refers to a pre or user-defined
"entity" that is to be inlined.

 ENTITIES A space-delimited sequence of ENTITYs.
decimal integer Any integer number.
 negativeInteger Any integer number with a value less than zero.
 positiveInteger Any integer number with a value greater than zero.

 nonNegativeInteger Any integer number with a value greater than or
equal to zero.

 nonPositiveInteger Any integer number with a value less than or equal
to zero.

 byte An 8-bit signed integer.
 short A 16-bit signed integer.
 int A 32-bit signed integer.
 long A 64-bit signed integer.
 unsignedByte A non-negative 8-bit integer number.
 unsignedShort A non-negative 16-bit integer number.
 unsignedInt A non-negative 32-bit integer number.
 unsignedLong A non-negative 64-bit integer number.

Table 4.4. Predefined XML Schema Datatypes that are Derived from Primitive Types

As with similar decisions in programming in general, the choice of which

predefined data type to use as the basis of a schema-defined type is often arbitrary (e.g.,

78

the int or integer primitive XML types are largely interchangeable within AVCL

schema). In the case of the exemplar data model of this research, decisions concerning

which XML data types to utilize as the basis for schema-defined AVCL simple types

were based on the heuristics of the data-binding software—the Sun Microsystems’ JAXB

API Specifically, XML numerical data types were chosen that JAXB binds to primitive

types in the Java programming language (double and int in most cases).

An exemplar subset of the schema-defined simple datatypes from AVCL

are summarized in Table 4.5. Numerical types defined by the schema are utilized in

multiple places. Commands that explicitly set vehicle control actuators, for example,

utilize either the percentType or signedPercentType regardless of the actuator’s

characteristics or potential vehicle-specific methods of specifying its setting (the value

specifies the percentage of maximum actuator authority that is being commanded). The

percentType is used for actuators with settings that are always positive (e.g., a UAV’s

engine power). The signedPercentType, on the other hand, is used to command actuators

whose settings can have values that are either positive or negative (e.g., a UUV’s rudder

deflection).

Schema-defined string types in AVCL are far less general in their use.

Normally appearing in only one or two places within the schema, strings provide a

reader-friendly format for specific data items that might be equivalently implemented as

integers. The reportingCriteriaType, for instance, is used to tell the vehicle when to

transmit status reports as it attempts to accomplish the specified goals and has potential

values of “never,” “periodic,” “statusChanged,” “onCommence” or “onComplete.” This

particular type can be equivalently represented with the integers zero through four, but

the syntactic sugar of the string type makes the resulting XML documents more readable

by human operators.

A full description of all AVCL-defined simple datatypes can be found in

Appendix A. It is worth emphasizing that a data model of the type implemented in this

research implicitly relies on rigorously defined datatypes even though the details of

individual type definitions themselves are often arbitrary in nature. The preceding

discussion provides an overview of some of the considerations regarding the definition of

79

simple datatypes for an XML Schema-governed data model that is intended to be

compatible with arbitrary application-level data models in a specific domain.

AVCL Simple Type XML Base Type Description
positiveIntType int A 32-bit integer with a value greater than zero.

nonNegativeIntType int A 32-bit integer with a value greater than or equal
to zero.

clockHoursType unsignedByte Possible military time hour values (0 to 23).

clockMinutesType unsignedByte Possible wall clock minutes or seconds values (0
to 59).

timeZoneType byte Possible time zone offsets (hours) to Greenwich
Mean Time (-12 to 12).

positiveScalarType double Double precision floating point number with a
value greater than zero.

percentType double Double precision floating point number with a
value between 0.0 and 100.0.

signedPercentType double Double precision floating point number with a
value between -100.0 and 100.0.

latitudeType double Double precision floating point number
representing a geographic latitude (-90.0 to 90.0).

longitudeType double
Double precision floating point number
representing a geographic longitude (-180.0 to
180.0).

headingType double Double precision floating point number
representing a direction (0.0 to 360.0 degrees).

datumTypeType string Enumerated list of search datum types (e.g., point
or area).

sensorTypeType string Enumerated list of sensor types.

trackModeType string Enumeration for potential navigation modes
between waypoints.

reportingCriteriaType string Enumeration defining when status reports are
required.

acknowledgeType string Enumeration defining whether a message needs
acknowledgement.

Table 4.5. Exemplar AVCL Schema-Defined Simple Datatypes and the Predefined
XML Datatypes from which they are Derived

3. Task-Level Behaviors
As discussed briefly in Chapter I, the set of task-level behaviors is a key

component of the proposed common data model for autonomous vehicle operations since

virtually every other aspect of this research relies on task-level behaviors. Task-level

behavior definition and implementation is therefore a crucial piece of this research.

The assertions that vehicles of a particular type operate in more or less the same

manner and that arbitrary vehicles can have their operations described using a single

80

vocabulary are not new. The Platform, Manipulator and Environment Sensor Subgroups

of the JAUS Command Class message set (partially listed in Table 2.3), for instance,

amount to a set of command messages that is potentially applicable to a broad array of

vehicles (JAUS, 04-4). This command set is a direct (and probably inevitable) byproduct

of the development JAUS as a vehicle-independent, open architecture designed around a

message set and a fixed set of software components. An important aspect of the JAUS

command set is that it is suitable for vehicles in multiple classes despite the fact that it

was initially designed primarily for ground vehicles. That is, the commands are

applicable not only to UGVs, but also to USVs, UAVs, and UUVs.

Of particular interest to this research are the commands of the JAUS Platform

message subgroup (Table 4.6) because they deal with vehicle maneuvering. Each of

these commands implicitly falls into one of four categories: open-loop, closed-loop /

open-ended, closed-loop / terminating, or miscellaneous. Commands such as the Set

Wrench Effort command, used to set the vehicle’s six-degree-of-freedom propulsive

effort, are open-loop commands. Commands of this sort explicitly set vehicle actuators

without regard to the results—they simply tell the vehicle how fast to spin a propeller or

how far to deflect a rudder. Further, there is no criteria by which to gauge the completion

of the command, so open-loop commands remain in effect until superseded. Closed-loop

/ open-ended commands direct the maintenance of one or more vehicle-state

characteristics and implementation requires state feedback to the controller. For instance,

Set Global Vector commands the vehicle to maintain a specific forward speed, altitude,

and orientation. A vehicle controller requires current speed, altitude and orientation

information to make actuator adjustments to maintain the commanded state. As with

open-loop commands, there are no predetermined completion criteria for closed-loop /

open-ended commands, so once issued they remain in effect until superseded. Closed-

loop / terminating commands are similar in that implementation requires state feedback,

however commands of this type have implicit completion criteria. The most obvious

JAUS command in this category is the Set Global Waypoint command that directs the

vehicle to travel to a specified location. Once the commanded location has been reached,

the command is complete and the vehicle reverts to some other form of control (the

JAUS Reference Architecture does not specify a fallback control mode). Finally,

81

miscellaneous commands do not directly affect vehicle control, but set vehicle switches

and parameters that may indirectly affect control. The only JAUS Platform subgroup

message falling into this category is the Set Discrete Devices command which is used to

command the status of the vehicle’s propulsion system and associated subsystems. While

not explicitly addressed in the JAUS Reference Architecture, the concepts of open-loop

versus closed-loop and terminating versus open-ended commands are inherent aspects the

command set. Not surprisingly, they are also relevant to other efforts in the area of

vehicle-independent command.

Message Name Command Category Command Description

Set Wrench Effort Open-Loop
Commands the propulsive effort and / or
braking effort in each of 6 potential degrees
of freedom.

Set Global Vector Closed-Loop /
Open-Ended

Commands the forward speed, altitude and
orientation (bank, pitch and roll).

Set Travel Speed Closed-Loop /
Open-Ended Commands the vehicle's forward speed.

Set Global Waypoint Closed-Loop /
Terminating

Commands the vehicle to proceed to a
specific position (latitude / longitude, altitude
and orientation).

Set Global Path
Segment

Closed-Loop /
Terminating

Commands the vehicle to travel a specified
path.

Set Discrete Devices Miscellaneous Commands all controllable settings of the
vehicle's propulsive system.

Table 4.6. JAUS Command Class Platform Subgroup Messages

The generic behaviors of CCL are somewhat more directly in line with the

common autonomous vehicle data model task-level behavior set than the JAUS command

set. In general, a behavior is a “definable unit of (normally low-level) activity initiated

by certain inputs which generates certain outputs as a result of its activity” (Turner, et al.,

93). A generic behavior is simply a behavior that is intended to be applicable across a

spectrum of different vehicle types. Envisioned as the basis for a vehicle-independent

UUV control architecture, eight potential functional categories of generic behaviors were

initially explored (Turner, et al., 93):

• Low-level movement: attractive and repulsive behaviors

• Medium-level movement: obstacle avoidance, physical boundary
following, wandering, etc.

• Sensor centric: assess sensor operation, modify sensing mode, etc.

82

• Effector centric: assess effector operation, modify effector operating
mode, etc.

• Homeostatic: monitor operational envelopes, monitor energy budget,
maintain trim, etc.

• Navigational level: path planning, situational assessment, searching,
exploring, etc.

• Mission level: plan mission, make maps, assess threat, cooperate (with
other agents), etc.

• Communication: message-level and discourse-level (i.e., conversation-
level) communication

As a result of efforts to determine both a level of behavior abstraction appropriate

for mission definition as well as the lowest level of behavior that can reasonably be

considered hardware independent, the preceding list of functional categories for generic

behaviors eventually evolved into the nine categories of Table 4.7 during the

development of CCL (Komerska, et al., 99-2). CCL-related efforts to date have been

focused on defining and implementing commands of the maneuver, navigate,

communicate, configure, monitor, and execute convention categories. Commands of

these categories are used to direct vehicle motion, monitor and react to internal and

external events, and specify interactions between vehicles.

Functional Category Description
Maneuver Move or relocate in a certain manner.
Navigate Update the vehicle internal reference location.

Communicate Send (or request) information about the vehicle's state or understanding
of the world.

Configure Change a preconfigured aspect of the vehicle.

Monitor Monitor an aspect of the vehicle and perform actions if specified criteria
are met.

Execute Convention Carry out a universally understood action.
Acquire Samples Collect samples from the external environment.
Sense Manipulate, configure, or utilize the vehicle's sensors.
Manipulate Manipulate, configure, or utilize the vehicle’s effectors.

Table 4.7. Generic Behavior Functional Categories of the CCL
(After: Komerska, et al., 99-2)

In addition to the functional categories Table 4.7, the evolution of CCL provides

an expanded analysis of behavior execution termination and the associated

implementation issues. As previously noted different types of behaviors have inherently

83

different durations or time arcs over which they are active. In general there are three

possible time-arc characterizations for a behavior. Some behaviors (such as those

affecting device or vehicle settings) have very specific time arcs. Other behaviors have

indeterminate but finite time arcs. Referred to as terminating in the previous discussion,

behaviors of this sort have specific criteria that dictate success and the behavior’s time

arc ends when all criteria have been met. Finally, some behaviors can have potentially

infinite time arcs. The open-loop and closed-loop / open-ended commands of the

previous discussion fall into this category. From the standpoint of a vehicle-independent

command language or data model, the various conditions under which behaviors can be

terminated necessitates design decisions to avoid ambiguity and facilitate real-world use.

In particular, it is probably inadvisable to allow behaviors with potentially infinite time

arcs to remain active indefinitely. Additionally, it is possible for commands with

indeterminate but finite time arcs to fail (e.g., a transit point might be unachievable, or

the sea state might be too high to allow a GPS fix to be obtained). For this reason it is

probably advisable to preclude even behaviors that normally terminate from remaining

active indefinitely. Most vehicle command languages, including CCL and AVCL,

prescribe the use of user-specified or default time outs for commands or behaviors that

are not guaranteed to terminate. JAUS is an exception to this practice, probably a result

of its extensive use to date in remotely operated vice autonomous vehicles.

Generic behaviors implemented in CCL along with their specified terminating

criteria are listed in Table 4.8. One observation that can be made concerning CCL’s set

of generic behaviors is that there are no open-loop behaviors and only one closed-loop /

open-ended behavior (Transit). This is a direct result of efforts to develop a hardware-

independent behavior set that provides a level of abstraction appropriate for the mission

level. In contrast the AVCL task-level behavior set does include a number of open-loop

behaviors. In practice, however, these types of behaviors are rarely utilized by actual

autonomous vehicles outside of systems testing (again, the use of open-loop commands

in JAUS is a result of its use in remotely operated vehicles). The availability of open-

loop commands in AVCL, therefore, is not meant to imply that they are a necessary

component of a common data model. Nevertheless their commonplace use in human-in-

the-loop systems makes them a sensible addition to the AVCL repertoire.

84

Generic Behavior

Functional
Category

Description

Termination
Criteria

GoTo Maneuver Transit to the specified
location.

Destination reached
or time out

MaintainPosition Maneuver Stay at the specified position. Time out

Transit Maneuver
Travel in the specified
direction at the specified
speed.

Time out

GPSFix Navigation Obtain a global positioning
system fix.

GPS fix obtained or
time out

AvoidRegion Navigation Do not enter the specified
area. Explicitly cleared

CommunicateStatus Communicate Transmit current status
message.

Message sent or
time out

CommunicateCapabilities Communicate Transmit vehicle capabilities
summary message.

Message sent or
time out

CommunicateFile Communicate Transmit a requested file. Message sent or
time out

CommunicateParameters Communicate Transmit vehicle parameters
message.

Message sent or
time out

CommunicateMessage Communicate Transmit a text message. Message sent or
time out

ConfigureParameters Configure Modify the specified vehicle
parameters.

Parameter
configured

MonitorParameter Monitor
Monitor a specified parameter
and report the values when
directed.

As scheduled

SystemAdmin Execute
Convention

Alter the specified system
administrative aspects. Command executed

ModifyBehavior Execute
Convention

Modify the currently executing
task or mission. Command executed

Table 4.8. CCL Generic Behaviors, Functional Categories, and Termination Criteria
(After: Komerska, 05)

A partial listing of AVCL task-level behaviors can be found in Tables 4.9 through

4.12. Task-level behaviors not included in this summary apply primarily to simulations

and do not affect mission execution; these behaviors are covered in Appendix A. With

the exception of the open-loop commands, most AVCL task-level behaviors are similar

to generic behaviors of the CCL maneuver, navigate and communicate functional

categories. The semantics of individual behaviors differ somewhat however. For

instance AVCL provides a number of closed-loop / open-ended behaviors to control

individual state values, whereas CCL provides only the Transit generic behavior.

Conversely, CCL defines multiple behaviors in the communications functional category,

while AVCL utilizes a single SendMessage behavior for all required communication.

85

Additionally, CCL does not implement behaviors that correlate to many of AVCL’s

miscellaneous task-level behaviors, most notably the Wait and WaitUntilTime behaviors.

Task-Level
Behavior

Description

Next Behavior
Issue Criteria

Termination
Criteria

Waypoint Transit to a location. Behavior
complete

Destination reached
or time out

CompositeWaypoint A parametrically specified
pattern of waypoints.

Behavior
complete

Last waypoint
reached or time out

Hover Proceed to a specified location
and hover (UUV only).

Behavior
complete

Destination reached
or time out

Loiter Proceed to a specified location
and remain in the vicinity.

Behavior
complete

Destination reached
or time out

TakeStation
Maintain position at a specified
range and bearing from an
object.

Behavior
complete

Destination reached
or time out

Recover Proceed to recovery station at
the specified position.

Behavior
complete Recovery complete

Table 4.9. AVCL Closed-Loop / Terminating Task-Level Behaviors that have Implicit
Termination Criteria

Task-Level
Behavior

Description

Next Behavior
Issue Criteria

Termination
Criteria

MakeAltitudeAGL Maintain the specified altitude
above ground level (UAV only). Immediate New vertical

command

MakeAltitudeMSL
Maintain the specified altitude
above mean sea level (UAV
only).

Immediate New vertical
command

MakeAltitude Maintain the specified altitude
above the sea floor (UUV only). Immediate New vertical

command

MakeDepth
Maintain the specified depth
below the sea surface (UUV
only).

Immediate New vertical
command

MakeHeading Maintain the specified heading. Immediate New heading
command

MakeSpeed Maintain the specified forward
speed (m/sec). Immediate New speed

command

MakeKnots Maintain the specified forward
speed (knots). Immediate New speed

command

MoveLateral
Move laterally at the specified
speed (cross-body-thruster
UUV only).

Immediate New Horizontal
control mode

MoveRotate Rotate about the vehicle's Z
axis (cross-body-thruster UUV). Immediate New horizontal

control mode

Table 4.10. AVCL Closed-Loop / Open-Ended Task-Level Behaviors Requiring State
Feedback Control for an Indeterminate Period of Time

86

Task-Level
Behavior

Description

Next Behavior
Issue Criteria

Termination
Criteria

SetAileron
Set the aileron deflection to the
specified percent of maximum
(UAV only).

Immediate New Horizontal
control mode

SetElevator
Set the elevator deflection to
the specified percent of
maximum (UAV only).

Immediate New speed
command

SetPlanes

Sets the deflection of the
horizontal planes to the
specified percent of maximum
(UUV only).

Immediate New vertical
command

SetPower
Sets the forward propulsion
power to the specified percent
of maximum.

Immediate New power
command

SetRudder Sets the rudder to the specified
percent of maximum. Immediate New horizontal

control mode

SetBodyThruster

Sets the cross-body thruster
power to the specified percent
of maximum (cross-body-
thruster UUV only).

Immediate New horizontal
control mode

Table 4.11. AVCL Open-Loop Task-Level Behaviors that Remain Active for an
Indeterminate Period of Time

Closely related to behavior time-arc termination is the issue of when to activate a

behavior (i.e., at what point in the mission’s execution do the specified behaviors become

active). Unlike the commands of a typical sequential script or the tasks of a hierarchical

controller, multiple behaviors will often be active simultaneously. The default behavior

activation heuristic in CCL is to activate behaviors sequentially (i.e., not in parallel), as if

the behavior sequence were a script. If multiple behaviors are processed at the same

time, the first one is activated. Once the termination criteria of the behavior is met, the

next behavior is activated. Alternatively, behaviors can be scheduled to activate when

user-specified criteria are met. Starting criteria can be as simple as an absolute, relative

or periodic time or can be based on the values of one or more monitored parameters.

(Komerska, 05)

87

Task-Level
Behavior

Description

Next Behavior
Issue Criteria

Termination
Criteria

Wait
Continue all current control
modes for a specified period of
time.

Behavior
complete Time out

WaitUntilTime Continue all current control
modes until a specified time.

Behavior
complete Time out

GpsFix Obtain a global positioning
system fix.

Behavior
complete

GPS fix obtained or
time out

SendMessage Transmit a message to another
vehicle or control station. Immediate Message sent

SetTime Reset internal vehicle time to
the specified time. Immediate Time reset

SetStandoff Set the acceptable distance
error for location capture. Immediate Standoff reset

SetPosition
Reset the internally maintained
vehicle position to the specified
location.

Immediate Position reset

MissionScript
Replace the current task-level
behavior script with one loaded
from a specified file.

Behavior
complete Script loaded

MissionScriptInline
Load a new task-level behavior
script from a specified file and
include it in the current script.

Behavior
complete Script loaded

Quit Shut down all vehicle systems. Behavior
complete Shutdown complete

Table 4.12. Miscellaneous AVCL Task-Level Behaviors

AVCL takes a slightly different approach to the initiation of scripted task-level

behaviors. As with CCL behaviors lacking scheduling criteria, AVCL task-level scripts

are executed in order. However, for a some AVCL task-level behaviors, it is

inappropriate to wait until a behavior terminates before activating the next behavior. In

particular a number of individual AVCL task-level behaviors affect only a subset of the

vehicle’s controllable parameters and do not provide any guidance for how the vehicle is

to control other aspects of its overall behavior (e.g., a behavior may direct a UUV to

maintain a specific heading while leaving depth and speed unspecified). In these cases it

makes sense to activate the next scripted behavior immediately.

AVCL bases its heuristic for scripted task-level behavior activation on the

previously activated behavior. When reasonable, primarily in the case of closed-loop /

terminating behaviors, a behavior is allowed to terminate before the next behavior is

activated. In other cases, for instance when encountering open-loop or closed-loop /

88

open-ended behaviors, the next behavior is activated immediately (even if it supersedes

and therefore terminates the previously activated behavior).

The default AVCL behavior activation heuristic can be effectively overridden

with the Wait or WaitUntilTime behaviors, both of which inhibit further behavior

activation until they terminate. When used in conjunction with closed-loop / open-ended

behaviors, the Wait and WaitUntilTime have the effect of driving the vehicle along a

trajectory for a specified period of time without regard to the vehicle’s location upon

behavior termination (similar to the JAUS Set Global Vector command or the CCL

Transit generic behavior). When used in conjunction with closed-loop / terminating

behaviors, the expected vehicle behavior is to maintain the location directed by the

closed-loop behavior for the specified period of time.

The preceding discussion is not intended to constitute an exhaustive examination

of the AVCL task-level behavior set (further discussion is left to Appendix A), but it does

provide a comparison of the AVCL task-level behaviors and the CCL generic behaviors

(and to a lesser extent the JAUS Platform message subgroup). Given the similarity of

purpose, it is not surprising that AVCL behaviors and CCL behaviors share many

characteristics. These similarities support the assertion that all activities undertaken by

an autonomous vehicle of a given type come from a finite set of capabilities and that this

set is essentially the same for all like vehicles. Further, it illustrates that these tasks can

be identified, described and ultimately utilized to express tasking for arbitrary vehicles.

The differences, however, illustrate that the suitable set of simple tasks is far from unique

and that the data-model designer has some leeway in deciding the makeup of the set (i.e.,

the definition of the individual tasks comprising the set) as well as how and under what

circumstances tasks are executed. For this reason the AVCL task-level behavior set is

proposed as a potential vehicle-independent task set for expressing vehicle tasking, but

no implication is made that it is the only or best task set available for this purpose.

Within the larger context of the common data model it is important only that a suitable

command set be developed and implemented. The AVCL task-level behavior set meets

this requirement and effectively supports the other aspects of this research, in particular

the equivalent mapping of AVCL behaviors to and from other command sets.

89

4. Declarative Task Specification
A common approach to realizing robust vehicle capability is from the bottom

up—that is, combining low-level behaviors into increasingly complex aggregate

behaviors. This is, the approach taken, for example, by CCL. Individual generic

behaviors are defined and combined to form more complex behaviors that in turn can be

used to define still-more complex behaviors. In the current development implementation

of CCL, the kΩ planner running in the Distributed Control Environment software

environment uses the current world model and the values of the monitored parameters to

determine which behaviors need to be active. Additionally, the ability exists to

instantiate new behaviors and modify existing ones as required to adapt to a changing

environment (Duarte, et al., 05).

The data model developed in the course of this research supports complex

autonomous vehicle operations through a completely different mechanism. Rather than

requiring complex behaviors to be generated from the bottom up, AVCL provides for a

description of the desired outcome, or goals, of an autonomous vehicle mission. This

description, referred to as an agenda, is then used to plan behavior sequences to achieve

the goals (derivation of behavior sequences is described in Chapters VI and VII). This

method of describing a mission and the ability to convert it into a task-level behavior

sequence can be applied in two ways. First, if used as part of a mission-planning system,

a behavior sequence can be generated and translated into a vehicle-specific format for use

in an actual vehicle. Although use of a declarative agenda in this manner does not allow

a vehicle to adapt to a changing environment, the clarity of declarative missions offers

advantages over manual generation of vehicle-specific scripts. The second way of using

a goal-based mission description is as the input to the top-level of a multi-layer control

architecture. When used in this manner, the data-model-compliant portions of the control

architecture (i.e., the upper layers) use current knowledge about the world state to plan an

appropriate task-level behavior sequence. This behavior sequence is ultimately converted

into a vehicle-specific format for execution by the lower layers of the architecture

(installation of a multi-layer AVCL-based controller on a non-AVCL vehicle is described

in Chapter VII).

90

Goal-based declarative agenda descriptions in AVCL take the form of a binary

finite state machine. Each state represents a single goal that the mission is to accomplish.

State transitions occur when the vehicle successfully achieves a goal or fails to do so

(e.g., exceeds allotted time or experiences a system failure that precludes goal success).

The declarative mission description includes the start state (i.e., the first goal that the

mission is to attempt), the vehicle’s intended launch and recovery positions, and a list of

areas that the vehicle is to avoid entering. The agenda is complete when a goal concludes

(successfully or unsuccessfully) and there is no transition associated with that goal’s

success or failure. Figure 4.2 graphically depicts a UUV mission specified in this

manner. In the example, the UUV will first attempt to search Area A. If successful, the

vehicle will attempt to sample the environment of Area A (upon failure the vehicle will

attempt to search Area B). If the area is successfully sampled, the vehicle will proceed to

and search Area B. The mission will proceed from goal to goal in this manner until

encountering a goal from which there is no transition specified. At this point the vehicle

will transit to the recovery location and conduct any mission completion activities.

Figure 4.2. A Finite State Machine Representing the Goals and Mission Flow of an

Exemplar Declarative UUV Agenda

In order to be of practical use, it is desirable for the data model to include not only

a mechanism for describing mission flow, but a set of goal types for expressing specific

goals. Similar to the task-level behavior set in that they are to be vehicle-independent,

91

the goal set consists of potential high-level mission objectives such as area search or

rendezvous with another vehicle for data transfer. Some insight into the types of mission

objectives that are potentially assignable to autonomous vehicles can be found in

documents such as the Joint Robotics Program’s Unmanned Ground Vehicle Master Plan

(JRP, 04), the U.S. Navy’s tactical memorandum regarding the integration of unmanned

vehicles into maritime operations (CNO, 04) and the NAS study of the same subject

(NAS, 05). Also applicable are JC3IEDM sections relating to action specification, since

the command and control information that these portions of the model convey similar

information as the goals of the data model. Because compatibility with external

command and control systems is a design goal, it is reasonable to use a mechanism

similar to JC3IEDM to specify goals in AVCL.

In this context, further examination of the JC3IEDM is warranted. JC3IEDM

enumerates a total of 188 action types that can be represented by the model and utilized

to provide tasking or summarize unit activities (MIP, 03-1). Most of these are not

applicable to the autonomous vehicle domain and can be discarded. Ultimately, the 14

JC3IEDM action types of Table 4.13 were utilized as the basis for the AVCL goal set.

Although other action-task activities are potentially applicable to autonomous vehicles,

these activity types are proposed as a starting point for expressing tasks that autonomous

vehicles might reasonably be expected to execute. This mapping does not imply,

however, that all autonomous vehicles are capable of achieving goals of any type. For

instance, it is unreasonable to expect an unarmed vehicle to successfully complete an

Attack goal or a vehicle without electromagnetic sensors to intercept electromagnetic

transmissions. Such cases are dealt with during the translation process to ensure that

vehicles are not inappropriately tasked.

Each AVCL goal type listed in Table 4.13 has a number of common data

parameters. For instance the instantiation of any goal includes the subsequent goals to

execute upon successful or unsuccessful completion (i.e., the outbound transitions of the

finite state machine state). Additionally, each goal must specify the operating area and

timing constraints (start and end times or a maximum duration). Finally, each goal may

include reporting criteria that dictate when status messages are to be transmitted (e.g.,

periodic, start and finish, any status change, etc.).

92

JC3IEDM Action
Task Activity

Corresponding
AVCL Goal Type

Description

Attack, not
otherwise specified Attack

To conduct a type of offensive action characterized
by employment of firepower and maneuver to
close with and destroy an enemy.

Decontamination
Services Decontaminate

To provide purification making an area safe by
absorbing, destroying, neutralizing, making
harmless, or removing chemical, biological, or
nuclear contamination.

Demolish Demolish To destroy structures, facilities, or material by any
available means.

Illuminate IlluminateArea To provide battlespace lighting by searchlight or
pyrotechnics.

Intercept MonitorTransmissions
To conduct electronic warfare support operations
with a view to searching, locating, recording and
analyzing radiated electromagnetic energy.

Jam Jam
To deliberately radiate, re-radiate or reflect
electromagnetic energy with the object of impairing
the use of electronic devices or systems.

Mark MarkTarget
To make visible (by the use of light, infrared, laser,
smoke, etc.) of an object in order to allow its
identification by another object.

Move Reposition To change position from one location to another.

Patrol Patrol To gather information or carry out a security
mission.

Rendezvous Rendezvous Achieve a meeting at a specified time and place.

Sample, biological SampleEnvironment Collect environmental samples for testing for
biological hazards.

Sample, chemical SampleEnvironment Collect environmental samples for testing for
chemical hazards.

Sample, nuclear SampleEnvironment Collect environmental samples for testing for
nuclear hazards.

Search Search To look for lost or unlocated objects or persons.
Table 4.13. JC3IEDM Action-Task Activities Incorporated into AVCL as Declarative

Agenda Goal Types

In addition to their common characteristics, individual goal types may have

specific parameters unique to that particular type of goal. A Search goal, for instance,

must specify the desired probability of detection, whether the datum (the most probable

location of the object of the search) is a point or an area (i.e., is the search to focus on the

centroid of the operating area or to apply equal attention across the entire area), and

whether the objective of the search is a single or multiple entities. Additionally, an

instantiated Search goal can specify one or more search targets. A Reposition goal, on

93

the other hand, requires no information beyond that common to all goal types. A full

description of the parameters associated with each goal type can be found in Appendix A.

Parameters for each goal type are intended to provide the information necessary to

adequately interpret the goal and to support automated plan generation.

5. Mission Results
A peripherally related portion of the data model that was developed in parallel

with task-level and declarative mission specification deals with accumulated mission

results. Not surprisingly, different vehicles use different data formats to encode mission

data such as vehicle telemetry, control settings, and event data. It can be argued that

since mission results are not directly relevant to tasking or communications they do not

need to be included in the proposed common data model. While this is true to an extent,

there are also factors that argue for its inclusion. Most importantly, messages containing

telemetry and event data are among the most common in inter-vehicle communications so

these types of data must be included in the model’s communications mechanics. Thus, it

is reasonable to define a mission-results data-model subsection and reuse its components

for message payload (the same approach is utilized for communication of task-level

behaviors or declarative goals). On a more subjective level, a vehicle-independent format

for mission results can facilitate the comparison of results from dissimilar vehicles.

All mission-results data in AVCL falls into one of two categories: discrete

samples of continuous vehicle state information or asynchronous event information. The

first category includes vehicle telemetry (position, velocity, etc.) and control settings.

Data of this sort amounts to a time-stamped snapshot of a continuous data stream

corresponding to a specific point in time. The second category consists of events that can

occur at any time during a mission. Generated contacts, messages sent and received, and

systems failures all fall into this category. Discrete samples of continuous data are

maintained in a generalized mission results section of an AVCL document while discrete

event data is maintained in an event log in the same document. Appendix A provides a

full description of all potential mission results and mission log content.

6. Inter-Vehicle Communications

Inter-vehicle communications is a broad area with significant ongoing research.

Topics range from networking and data-transmission aspects of autonomous vehicle

94

communications (e.g., ad hoc networks and forward error correction) to more abstract

topics such as behavior and protocol requirements for cooperation. Of particular interest

from the common data model standpoint are the types of messages required to support

cooperative autonomous vehicle behaviors, since these are the messages that must be

accounted for in the data model.

Existing research, encapsulated effectively in the FIPA Communicative Act

Library Specification, indicates that communicative acts (which take the expressive form

of messages when applied to autonomous vehicles) between autonomous agents can be

classified as one of two types: request or inform. In fact, all message types within the

Communicative Act Library Specification are derived from either the request or inform

base types (FIPA, 02). Request messages are those that request either information (e.g.,

vehicle state or contact information) or action (e.g., an individual command or an entire

mission) from the receiving vehicle. Inform messages, on the other hand, provide

information such as the sending vehicle’s state or sensor data. The Communicative Act

Library Specification rigorously defines the semantics of its 22 acts, but does not

specifically define the content. Rather, it provides a wrapper for the content that

describes how it is to be interpreted. With the exception of CCL which expresses all

messages as either command or inform (Komerska, 05), existing autonomous vehicle

communications schemes do not directly cite the FIPA Communicative Act Library

Specification, but each of them implicitly utilizes this request / inform model.

Designed to support a broad array of autonomous agents in addition to

autonomous vehicles, the 22 messages of the current Communicative Act Library

Specification provide more functionality than is required to fully exercise the capabilities

of available and developmental vehicles. Current autonomous vehicle communication

schemes, therefore, are not required to implement full library functionality. In addition

the syntax and format is not generally utilized in autonomous vehicle messaging.

Instead, autonomous vehicle communications schemes tend to implement only those

messages that meet the specific requirements of the envisioned vehicle interactions.

Concerning the more general messaging requirements of inter-vehicle

communications, a number of previously cited efforts are relevant. For instance JAUS

95

and C2L are both designed around the content of their respective message sets. Worth

noting in the case of JAUS are the messages of the Query and Inform message classes as

well as the previously discussed Platform class. Each of these message classes contain

Platform, Manipulator and Environment Sensor subgroups. Further, each message of the

Platform class subgroups can be correlated with one or more messages in the same

subgroup of the other classes. That is, for every Platform class message, there are one or

more Query Class messages that can be used to request information about the

commanded parameters and one or more Inform Class messages that are used to provide

the appropriate information (JAUS, 04-4). In addition the Query and Inform classes

contain messages used to request and provide vehicle specifications and capabilities. The

JAUS message set fairly clearly illustrates the request-inform messaging model—

Platform and Query classes form JAUS’ request messages while the Inform Class defines

its inform messages. (JAUS, 04-4)

The C2L specification defines messages for conveying much of the same

information as JAUS—directive commands and vehicle status. Messages for requesting

information are conspicuously absent from the C2L message set. Messages are available

for transmitting vehicle state for a number of different vehicle types and also for

transmitting various types of sensor data, but no message types are included to request

this information. Thus, C2L has a somewhat narrower implementation of the request-

inform communications model than JAUS. Since the conditions upon which inform

messages are transmitted are defined outside of the scope of C2L, they can vary from

vehicle to vehicle or operation to operation.

These two examples, as well as CCL’s use of messaging to command generic

behaviors and propagate data, make it evident that among the most basic requirements of

inter-vehicle communications is the ability to exchange command and state information.

For a multi-vehicle system in which the composition is predefined (e.g., a JAUS system)

or in which the capabilities of all vehicles are known (e.g., a system of C2L-compliant

vehicles) the predefined message types are probably sufficient. On the other hand, they

will likely prove insufficient for systems consisting of arbitrary vehicles with unknown

capabilities, or for systems whose composition may change over time. For these systems,

96

messages will be required to facilitate the discovery of vehicle capabilities as well as the

formation and maintenance of vehicle groups.

Among the efforts addressing these aspects of multi-vehicle operations are the

Meta-Level Organization and Task-Level Organization protocols developed through the

Cooperative Distributed Autonomous Oceanographic Sampling Networks (CoDA)

research (Chappell, et al., 97)(Turner and Turner, 04). CoDA applies a multi-agent

systems and distributed artificial intelligence approach to the domain of autonomous

vehicle operations. In the proposed CoDA system, vehicles self-organize into a Meta-

Level Organization in order to discover resources and design a Task-Level Organization

to fit the current situation and system composition (Turner and Turner, 04). Individual

autonomous vehicles go through protocols to discover, join or leave an existing Meta-

Level Organization, form a Meta-Level Organization if one does not exist, and form a

Task-Level Organization to accomplish specific tasks. Inter-vehicle communications are

used to facilitate Meta-Level Organization and Task-Level Organization formation and to

maintain synchronization among vehicles as they proceed through their protocols.

Although the design and implementation of specific CoDA protocols are the

subjects of ongoing research, a significant portion of the required messaging capabilities

are becoming clear. Not surprisingly, the communications requirements of a system

along the lines of CoDA include tasking and state messages similar to those available in

JAUS and C2L. Also required are a set of messages specific to the tasks of organization

formation and maintenance. Specifically, individual vehicles need to broadcast messages

to locate an existing organization, initiate and conclude organization formation, dissolve

an organization, or join or leave an existing organization. Finally, the formation and

maintenance of autonomous vehicle organizations to support coordination requires

messages that convey the capabilities of individual vehicles. The originally proposed

CoDA protocols utilized has-capabilities and controls-capabilities messages for this

purpose. More recently much of the CoDA functionality has been incorporated into CCL

which conveys vehicle capability with a 36 byte data object that encodes 69 operating

characteristics that are used to specify operational limits, vehicle physical characteristics

and installed sensor and navigation systems (Komerska, 05).

97

Based on this discussion it is possible to itemize the minimum messaging

requirements for a cooperative autonomous vehicle system (Table 4.14). The

requirements can be broken down into five fairly broad categories, each of which can be

categorized as a request or inform message per the FIPA Communicative Act Library

Specification. All of the discussed communications languages define messages that can

be used to command a vehicle to perform an action or to provide state information about

a vehicle. Further, with the exception of C2L, each language provides messages that can

be used by a vehicle to describe its own capabilities or to request state information from

another vehicle. Finally, the languages and protocols that are designed to support

dynamic cooperative groups require messages to support group maintenance.

Message Type Description Message Category
Command the vehicle to perform an action Request (action)
Request information from the vehicle Request (information)
Provide vehicle state or event information Inform
Provide vehicle capabilities information Inform
Initiate or request cooperative group maintenance action Request (action)

Table 4.14. Proposed Minimum Messaging Requirements to Support Multi-Vehicle
Operations

A significant portion of the messaging capabilities listed in Table 4.14 are defined

in other portions of the common autonomous vehicle data model defined by AVCL. The

constructs required to command vehicle actions are available in the task-level behavior

and declarative goal portions of the AVCL data-model and constructs required to support

vehicle state and event information are available in the mission results portion. It is

reasonable to reuse these constructs in command and inform message definitions. Thus,

definition of specific message types is required only for information requests, group

maintenance requirements and vehicle capability reporting. Information requests and

requests for group maintenance are incorporated into the model as enumerated strings

that identify the specific type of information or action that is being requested. Vehicle

capability reporting is implemented using vehicle-type-specific elements that can be used

to convey maneuvering limits, physical characteristics and sensor configuration. A more

complete summary of the message types available in AVCL is provided in Table 4.15.

98

Message
Type

Message Content

Implied Message Intent

Mission
Specification

A complete mission (task-level
behavior sequence or a set of
declarative goals).

The sender is requesting that the recipient
execute the mission.

Behavior
Specification

A single task-level behavior. The sender is requesting that the recipient
invoke the behavior.

Group
Maintenance

A group initiation or maintenance
request.

The sender is attempting to locate, form,
join or leave a group.

Information
Request

A request for vehicle information. The sender is requesting information from
the receiver (e.g., vehicle state, sensor
data or event summary, etc.).

Vehicle
Characteristics

A capabilities summary. The sender is reporting its physical and
operational characteristics.

Vehicle State Telemetry or control information. The sender is reporting one or more
aspects of its current state (location,
speed, control settings, etc.).

Sensor Data Sensor information. The sender is providing its most recent
sensor data.

Vehicle Event An observable event. The sender is reporting an event (e.g.,
contact report, engineering casualty, etc.).

Table 4.15. Message Types Incorporated into the AVCL Schema

C. SUMMARY
A brief analysis of the differences between ontologies and data models leads to

the conclusion that the data model proposed and implemented in this research does not

inherently possess a sufficient degree of semantic richness to be considered an ontology.

Specifically, it constrains the format of the model, but does not explicitly define the

nature of the relationships between the various model elements. Nevertheless it

constitutes a rigorously defined data model that is sufficient to serve as a vehicle-

independent vocabulary for autonomous vehicle operations.

The data-model developed in the course of this research defines a set of task-level

behaviors that are suitable for use with arbitrary vehicles. They are also suitable as

building blocks for use in completing more abstract declarative goals. Appropriate task-

level behavior sequences can be automatically generated to accomplish the goals

specified in a data-model-compliant declarative mission by either an off-line mission

planning system or an on-vehicle high-level controller. In either case, the vehicle-

independence of the task-level behavior sequence makes it suitable for conversion to

arbitrary vehicle-specific formats. In addition to both scripted and declarative mission

99

specification, AVCL implements inter-vehicle communications and mission results.

Subsequent chapters demonstrate the utility of all AVCL sections in support of arbitrary

vehicle operations.

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

V. VEHICLE-SPECIFIC LANGUAGE CONVERSIONS

A. INTRODUCTION
The discussion to this point has focused on the structure of the exemplar common

autonomous vehicle data model. More important than the data model’s design, however,

is its application to actual vehicles. In a sense the data model amounts to infrastructure

that enables the techniques explored in this research to support vehicles of various types.

This chapter discusses one of the more important capabilities offered by an XML-based,

common autonomous vehicle data model—automated translation between vehicle-

specific data formats.

Specifically covered in this chapter is the conversion of five exemplar vehicle-

specific data formats to and from AVCL. Text-based data formats include mission

programming languages for the NPS Phoenix UUV, the NPS ARIES UUV, the Naval

Oceanographic Office Seahorse UUV, and the Hydroid REMUS UUV. Additionally, the

compatibility of AVCL with binary vehicle-specific formats is demonstrated through

translations to and from the platform subgroups of the JAUS Command, Query and

Inform message classes.

The JAUS message sets of interest have been discussed in sufficient detail

previously and do not require further elaboration. The four text-based data formats,

however, have not been introduced thus far. Therefore, the next section provides a brief

overview of the structure and semantics of each of these data formats. The remainder of

the chapter details the specific mechanisms by which AVCL documents are converted to

and generated from each of the five exemplar formats.

B. RELATED MISSION PROGRAMMING LANGUAGES

1. The Phoenix UUV Command and Control
The Phoenix UUV was a research vehicle designed and built by the NPS Center

for Autonomous Underwater Vehicle Research. The Phoenix possessed lateral and

vertical cross-body thrusters that enabled it to hover in a fixed position, making it unique

among the UUVs discussed here. Further differentiating Phoenix from other vehicles to

which AVCL has been applied is the use of the RBM control architecture with high-level

102

missions defined in Prolog (Healey, et al., 96). AVCL compatibility with RBM missions

defined in Prolog is not a specific goal of this research, although the increasingly

common use of XSLT to generate program code and the template-based nature of the

RBM mission planning expert system described in (Davis, 96) provide evidence that they

are, in fact, compatible (in addition, a proposed extension to the RBM wherein an AVCL

goal-based declarative mission definition replaces the Prolog definition is the subject of

Chapter VII). The discussion in this chapter focuses on the application of AVCL to the

behavior definition language that formed the underpinning of the original RBM

(Brutzman, 94) (Davis, 96).

Although the Phoenix UUV is no longer operational, its command language was

chosen as an AVCL conversion target for a number of reasons. First, the mapping

between this language and AVCL is fairly straightforward making it a good candidate for

the first target language. Additionally, the Phoenix tasking language is the only

behavior-based language for which AVCL translations have been developed. Finally,

since the Phoenix command language was designed within the context of a multi-layer

control architecture, successful conversion between AVCL and the Phoenix command

language serves to demonstrate the applicability of a common data model to vehicles

utilizing various control architectures.

At the execution level, a Phoenix mission specification takes the form of a

behavior script. Individual behaviors are defined by a keyword and a parameter list (a

summary of the most common behaviors is provided Table 5.1). The keyword identifies

the type of behavior being initiated. The number of parameters associated with the

behavior determines how the individual parameters are interpreted. For example the

waypoint behavior has four potential parameter arrangements: Cartesian coordinates,

depth, propeller revolutions per minute during transit, and standoff distance; Cartesian

coordinates, depth and standoff distance; Cartesian coordinates and depth; or just

Cartesian coordinates. Behavior initiation and termination is handled in a manner similar

to that used to control the activation and deactivation of AVCL task-level behaviors—

activation is based on the preceding behavior type while termination is based on the

activated behavior type.

103

Behavior
Name

Description

Parameters

Depth Set vehicle's commanded depth. Commanded depth
GPS Obtain a GPS fix. None

Heading Set vehicle's commanded
heading. Commanded heading

Hover

Command the vehicle to
proceed to a specified
geographic location and hover
there.

Cartesian X coordinate of the destination
Cartesian Y coordinate of the destination
Commanded depth at hover point (optional)
Heading to maintain during hover (optional)
Standoff distance from destination (optional)

Lateral Activate lateral body thrusters to
slide sideways. Commanded lateral thruster voltage

Mission-Script

Replace the currently executing
mission script with a new one. Path to the new mission script file

Planes Open loop horizontal planes
deflection command. Commanded plane deflection

Position Set the vehicle's internally
maintained position.

Cartesian X coordinate
Cartesian Y coordinate
Depth (optional)

Quit End the mission and shut down. None

Rotate Activate lateral body thrusters to
rotate about the vehicle's Z axis. Commanded lateral thruster voltage

RPM Set ordered propeller
revolutions per minute.

Both or left propeller revolutions per minute
Right propeller revolutions per minute
 (optional)

Rudder Open loop rudder deflection
command. Commanded rudder deflection

Thrusters-Off Disable cross-body thrusters. None
Thrusters-On Enable cross-body thrusters. None

Wait Continue current behavior for a
specified period of time.

Time to wait before commencing the next
behavior

Wait-Until Continue current behavior until
the specified time.

Clock time at which to commence the next
behavior

Waypoint
Command the vehicle to
proceed to a specified
geographic location.

Cartesian X coordinate of the destination
Cartesian Y coordinate of the destination
Commanded depth at destination (optional)
Revolutions per minute to use during transit
 (optional)
Standoff distance from destination (optional)

Table 5.1. Selected Phoenix UUV Behaviors (After: Davis, 96)

2. ARIES UUV Mission Specification
The follow-on vehicle to the NPS Phoenix is the NPS ARIES UUV and this

vehicle is currently the primary research platform of the NPS Center for AUV Research.

Although similar in many regards to the Phoenix, ARIES has numerous navigation,

sensor, electronic and computational system upgrades (Nicholson, 04). Additionally,

104

ARIES no longer has cross-body thrusters installed so it is not currently capable of

hovering at a fixed position. Most relevant from the standpoint of this research is that

ARIES no longer utilizes the RBM control architecture as described in (Byrnes, 93).

Rather, for most operations ARIES missions take the form of a simple waypoint script

(Marco, 01).

From a conceptual standpoint, an ARIES waypoint list is the simplest mission

specification format to which AVCL has been applied. The first line in the mission file

consists of a single integer value that identifies the number of waypoints the vehicle is to

execute. Each subsequent line contains 11 white-space-delimited numerical fields that

describe a single waypoint. Individual fields specify the location of the waypoint,

describe the vehicle’s control modes en route, and define how much time the vehicle is

allotted to successfully reach the waypoint (the content description of each field is

provided in Table 5.2). The vehicle transits to waypoints in the order in which they are

specified and does not begin transiting to a new waypoint until the preceding waypoint

has been reached. Failure to arrive at any waypoint within the allotted time is a mission

abort criteria and causes the vehicle to terminate the mission and surface.

Field Description
1 Cartesian X coordinate of the waypoint (meters)
2 Cartesian Y coordinate of the waypoint (meters)
3 Left screw commanded speed (volts)
4 Right screw commanded speed (volts)
5 Vertical control mode flag: 0=Depth Control, 1=Altitude Control
6 Commanded altitude during transit (meters)
7 Commanded depth during transit (meters)
8 Perform a GPS popup during transit: 0=No, 1=Yes
9 Duration of GPS popup if commanded (seconds)

10 Watch radius (i.e., how close to the waypoint is good enough) (meters)
11 Maximum time allotted to reach the waypoint (seconds)

Table 5.2. Field Descriptions for Individual Entries of an ARIES Waypoint List
(From: Marco, 01)

Given that a goal of the common data model is to capture the semantics of

common autonomous vehicle operations in the task-level-behavior set, it is not surprising

that the representation of ARIES waypoint scripts with AVCL is not difficult—transit

between waypoints is, after all, one of the most frequently required autonomous vehicle

105

tasks. The self-contained nature of each waypoint (a byproduct of their specification as

tasks vice behaviors) introduces a number of issues during the translation process

(particularly when converting AVCL task-level behavior scripts to ARIES waypoint lists.

Various techniques have evolved over the course of this research to facilitate the process

which are discussed in detail later in this chapter.

3. Seahorse UUV Task Set
The Seahorse UUV is a long-endurance, oceanographic survey vehicle designed

and built by the Pennsylvania State University Advanced Research Laboratory and

operated by the Naval Oceanographic Office (Peterson and Head, 02). The Seahorse

possesses control, navigation and sensor capabilities similar to those of ARIES, but uses

its own command language to define mission scripts. Consisting of the six task types

listed in Table 5.3, the Seahorse command language arguably provides more control than

ARIES waypoint descriptions. It is, however, still a task-scripting language in which a

new task is not initiated until the preceding task has completed.

Task Type Description

Launch Causes the vehicle to submerge and start the propulsion motor. Always
the first order of a valid mission.

Waypoint
Navigation

Directs the vehicle to transit from the current location to a specified new
location.

GPS Fix Directs the vehicle to surface, acquire a GPS fix, and return to the
previously ordered depth or altitude above the bottom.

Station Keep Directs the vehicle to maintain a circular holding pattern about a specified
destination for a specified period of time.

Surface Comms Directs the vehicle to surface at the current location for communications
purposes.

Rendezvous Directs the vehicle to proceed to a specified recovery position. Always the
last order of a valid mission.

Table 5.3. Seahorse UUV Task Set (After: NAVO, 04)

In addition to providing more task types than ARIES, the Seahorse command

language is more complex from a syntactic standpoint. Each task has a number of

parameters and options that dictate how the task is to be accomplished. Further,

positions, distances and speeds can each be specified in a number of ways. Keywords are

used to indicate the parameters and units as shown in the example station-keeping order

of Figure 5.1. The example demonstrates the use of parameter-type keywords (to the left

of the ‘:’ on each line) to specify the purpose of a given parameter (e.g., the latitude at

106

which to maintain station specified in the third line) with the parameter value following

the parameter-type keyword. Additional keywords are used to specify the parameter

units if applicable. The transit altitude and loiter depth of the example, for instance, are

specified in meters, but the language permits their specification in feet as well. Other

tasks use the same parameter-type / parameter-value pattern and in many cases one

parameter type can be substituted for another (e.g., the transit altitude of Figure 5.1 can

alternatively be specified as a transit depth).

Valid Seahorse mission files always begin with a launch order and finish with a

rendezvous order, so for all practical purposes, there are only four order types available

for general use—navigate to a waypoint, travel to and maintain a station, obtain a GPS

fix and surface for communications. All of these tasks are easily expressed with AVCL

task-level behaviors. As is the case with ARIES waypoints, however, each task is self

contained which necessitates the use of similar programming patterns to convert Seahorse

command files to and from AVCL task-level behavior scripts.

Figure 5.1. An Example Seahorse UUV Station Keeping Order (After: NAVO, 04)

4. The REMUS UUV Objective Set

Of the vehicle-specific data formats to which AVCL has been applied, the

command language of the REMUS family of UUVs is the most structurally complex.

The complexity arises from the use of references within mission objectives, multiple

methods for specifying locations, and the requirement to designate the locations of at

least two navigation transponders.

A REMUS mission file consists of a series of locations followed by a series of

objectives. Locations are used to specify the geographic positions of navigation

 Start_Order : Station_Keep_Order
 Scheduling_Info_Is_Timed : False
 Destination_Latitude : 28.1 Degrees
 Destination_Longitude : 88.1 Degrees
 Until_when : 90.0 Minutes
 Transit_Altitude : 10.0 Meters
 Loiter_Depth : 15.0 Meters

107

transponders and also to define locations that can be referenced later in the file. Each

position definition contains the “[Location]” keyword, a type, a label, and the geographic

position. Locations defining transponder locations are assigned a type corresponding to

the transponder. All other locations are assigned a type of “waypoint.” The actual

position can be specified using latitude and longitude or a reference to a previously

defined position and can include an offset as well (i.e., a location can be defined relative

to an existing location). The end of the location section of the mission file is designated

by an empty location (i.e., a location with a waypoint type but no position).

Each objective in the mission file begins with the “[Objective]” keyword and its

type (available objective types are listed in Table 5.4). REMUS objective definitions are

similar to Seahorse tasks in that each objective description uses parameter-keyword /

parameter-value pairs to describe the objective and how its execution is to proceed.

Objectives with geographic parameters can reference locations from the locations portion

of the mission file or define their own locations (and may utilize an offset from another

position as well).

Objective

Type of
Command

Description

Set Position Initialization Set the vehicle starting latitude and longitude (must be
the first objective of the mission).

Wait Depth Mission Start Waits until the vehicle is deeper than a depth before
commencing the mission.

Wait Prop Mission Start Waits for the vehicle's prop to be spun before
commencing the mission.

Wait Run Mission Start Waits until a run command is received before
commencing the mission.

Wait Magnet Mission Start Waits until the magnet is removed from a vehicle sensor
before commencing the mission.

Navigate Waypoint Navigates to a waypoint using the best method.
Dead Reckon Waypoint Navigates to a waypoint by dead reckoning.
Transponder
Home Waypoint Uses a transponder to home the vehicle to a specified

position.

Navigate Rows Waypoint
(multiple) Directs a lawn-mowing pattern of waypoints.

Surface Miscellaneous Surfaces the vehicle at the end of a mission.
Compass Cal Miscellaneous Performs an in-water compass calibration.

Include Miscellaneous Includes an external mission file into the currently
executing mission.

End Miscellaneous Uses to indicate the end of a mission.
Table 5.4. REMUS UUV Objective Types (After: Hydroid, 02)

108

Each mission begins with a set position objective (and in most cases one of four

mission start objectives) and concludes with an end objective (probably immediately

preceded by a surface objective). This leaves six objective types that are used to define

the bulk of most missions. Three of these are used to define a single waypoint (with the

navigate objective being the preferred type since it allows the vehicle to dynamically

choose the best navigation method). A fourth provides a way of defining a complete

waypoint pattern with a single objective.

Despite the syntactic complexity, REMUS missions are executed as task scripts

and are semantically similar to the mission files of the ARIES and Seahorse vehicles. In

this regard the REMUS objective set is largely compatible with AVCL’s task-level

behaviors and the same programming patterns as with ARIES and Seahorse missions are

applicable. On the other hand, the language contains a number of tasks that are unique to

the REMUS family of vehicles that require special handling in the conversion process.

C. TEXT-BASED VEHICLE-SPECIFIC DATA FORMATS

1. Generation of Vehicle-Specific Documents from Data-Model-
Compliant XML

a. Introduction
As discussed in Chapter III, XSLT is the mechanism of choice for

converting XML data to other text-based formats so its use in converting AVCL to

vehicle-specific formats is not surprising. The programming pattern used in XSLT

stylesheets that process AVCL documents involves the implementation of a template for

each AVCL element that correlates to the target data format—most frequently in the case

of AVCL, the task-level behaviors. Depending on the characteristics of the specific

behavior and those of the target data format, template actions might include the

generation of vehicle-specific commands or simply the update of command parameters

for use during subsequent behavior processing. For instance, all of the vehicle-specific

languages discussed here define some form of waypoint command that can be used to

direct the vehicle to specific geographic positions. Regardless of the target language, it

is appropriate for the stylesheet’s Waypoint-behavior template to generate a vehicle-

specific waypoint command. On the other hand, only the Phoenix command language

includes unique behaviors ordering depth below the surface or altitude above the bottom.

109

Rather, command parameters of this type are typically embedded within the vehicle-

specific waypoint command. Stylesheets targeted to most vehicle-specific formats,

therefore, utilize templates for the MakeDepth or MakeAltitude behaviors that update

commanded depth or altitude for future use but do not generate output.

b. Conversion of AVCL for the Phoenix UUV
The first vehicle-specific language for which an XSLT stylesheet was

implemented is the behavior-scripting language of the Phoenix UUV. Of the languages

for which mappings to and from AVCL have been developed, Phoenix behavior scripts

are the most semantically similar to AVCL task-level behavior scripts. Phoenix behavior

activation and termination is handled in a manner similar to AVCL task-level behaviors

and individual Phoenix behaviors are often similar enough in function to AVCL

behaviors to enable a one-to-one mapping between the two languages. Of the 19 AVCL

task-level behaviors listed in Table 5.5, 15 can be mapped to a single Phoenix behavior

(column two of the table). The other four are mapped to a primary Phoenix behavior but

may require the use of one or more additional Phoenix behaviors (listed in the third

column of Table 5.5) to fully express their content.

AVCL Task-Level
Behavior

Associated
Phoenix Behavior

Possible Additional Required
Phoenix Behaviors

CompositeWaypoint Waypoint (multiple) Depth, RPM, GPS, Standoff
GpsFix GPS None
Hover Hover Depth, Heading, GPS, Standoff
Loiter Waypoint Depth, RPM
MakeDepth Depth None
MakeHeading Heading None
MakeSpeed RPM None
MakeKnots RPM None
MissionScript Mission-Script None
MoveLateral Lateral None
MoveRotate Rotate None
Quit Quit None
SetPlanes Planes None
SetPosition Position None
SetPower RPM None
SetRudder Rudder None
Wait Wait None
WaitUntilTime Wait-Until None
Waypoint Waypoint Depth, RPM, GPS, Standoff

Table 5.5. A Partial Mapping of AVCL Task-Level UUV Behaviors to Phoenix UUV
Behaviors

110

The similarity between AVCL task-level behavior scripts and Phoenix

behavior scripts greatly simplifies the AVCL-to-Phoenix translation stylesheet. Most

significantly, since individual behaviors do not necessarily override all previously

ordered control parameters (e.g., a new depth can be ordered without affecting the

ordered speed or heading), there is no requirement to maintain control parameter

information outside the scope of an individual template. Stated differently, templates are

completely self contained—their output is not affected by previously invoked templates

and they do not influence subsequently invoked ones.

Translation of AVCL task-level behaviors amounts to the generation of

one or more Phoenix behaviors that command the actions specified by the AVCL

behaviors. AVCL behaviors such as MakeDepth are translated into a single Phoenix

behavior (column two of Table 5.5). AVCL behaviors that potentially affect multiple

control parameters are often handled differently. The AVCL Waypoint behavior, for

example, can be used to specify not only a destination position, but the depth of the

waypoint, the speed of transit and how close the vehicle must get to the destination (an en

route GPS fix can be ordered as well). While the Phoenix Waypoint behavior is capable

of commanding speed, depth and standoff distance as well, it cannot do so in arbitrary

combinations (e.g., a transit speed can be commanded only if a depth is commanded as

well). Given the various control parameter combinations that can be ordered by a single

AVCL Waypoint behavior, it is more appropriate to use the Phoenix Waypoint behavior

to specify only the horizontal location of the destination. Other control parameters

specified in the AVCL behavior are converted to Phoenix behaviors that immediately

precede the Waypoint behavior. Since the Phoenix behavior activation scheme calls for

immediate activation of the behavior immediately following a Depth, RPM or GPS-Fix

behavior, this behavior sequence is effectively equivalent to a single behavior

encapsulating all parameters. The AVCL Waypoint behavior in Figure 5.2, for instance,

is translated to a sequence of Phoenix behaviors specifying the transit depth and transit

speed prior to the waypoint command.

Also illustrated in Figure 5.2 are the implementation of unit conversions

within the XSLT stylesheet. The units used to specify the Cartesian coordinates and

depth of the AVCL waypoint (meters) are converted to feet as required by Phoenix and

111

the propeller power of 75 percent is converted to an actual revolutions per minute value.

While these particular conversions are easily accomplished with XSLT, they do highlight

a potential unit conversion problem. AVCL allows positions to be specified using either

Cartesian coordinates in an earth-fixed coordinate frame (with the origin located at a

geographic position specified using a GeoOrigin element), a relative position (Cartesian

coordinates in an earth-fixed coordinate system located at the current vehicle position) or

latitude and longitude. Phoenix, on the other hand, accepts only Cartesian coordinates.

Two methods are commonly utilized by applications requiring this type of geographic

data processing. If a high degree of accuracy is required or applications work with actual

cartographic products, Geographical Information System support is often required. On

the other hand, many applications (including many autonomous vehicles and vehicle

planning systems) directly implement formulas that provide the requisite level of

accuracy without the overhead or cost of a Geographical Information System.

Unfortunately, XSLT processors do not have inherent access to an installed Geographical

Information System and XPath does not have built-in trigonometric functions required to

implement conversions within the stylesheet.

Figure 5.2. An AVCL Waypoint Behavior and an Equivalent Phoenix UUV Behavior

Sequence Automatically Generated from an XSLT Stylesheet

The solution to this potential shortcoming is the use of XSLT extensions

that provide access to methods and programs written in other languages that implement

AVCL Task-Level Behavior:
<Waypoint>
 <XYPosition x="200.0" y="50.0"/>
 <Depth value="12.0"/>
 <SetPower>
 <AllPropellers value="75.0"/>
 </SetPower>
</Waypoint>

Phoenix Behavior Sequence:
DEPTH 39.525612
RPM 525
WAYPOINT 658.7602 164.69005

112

functionality not directly available in XSLT. Computation of Cartesian coordinates

within the AVCL processing stylesheets developed during this research, for instance,

relies on Equations 5.1 and 5.2 where R is the equatorial radius of the earth in meters and

Lat0 / Lon0 is the geographic position of the Cartesian coordinate frame origin. These

functions are implemented as static Java methods that are accessed from within the XSLT

stylesheets as required. Alternatively, the same extension mechanism might be utilized to

access Geographical Information System functionality for increased accuracy or

advanced geographic processing.

()

360
2 0LatLatR

x
−

=
π

 (Eq. 5.1)

()()()

360
cos2 0LonLonLatR

y
−

=
π

 (Eq. 5.2)

To summarize, XSLT stylesheet templates can typically map instances of

AVCL task-level behaviors to a single Phoenix behavior. In some cases, more than one

Phoenix behavior is utilized to accurately capture the semantics of an AVCL task-level

behavior. Regardless of the number of behaviors required, XSLT stylesheet templates

that process AVCL task-level behaviors are self contained in that they neither rely on the

outcome of previously invoked templates nor influence the execution of subsequently

activated templates.

c. Conversion of AVCL for the ARIES UUV
In many respects ARIES UUV waypoint lists are the simplest target data

format for AVCL task-level behavior scripts. After all, they consist of little more than a

series of identically formatted numerical sequences. In fact the AVCL Waypoint

behavior template is the only one in the AVCL-to-ARIES stylesheet that actually

generates output. The templates for all other behaviors simply update commanded

control parameters.

There is, however, a significant difficulty imposed by the self-contained

nature of ARIES waypoints—XSLT’s lack of side effects (particularly the immutability

of XSLT variables) might seem to preclude the use of templates to update command

parameters for later use. The common iterative pattern used in XSLT stylesheets does

not retain information from iterative step to iterative step. If a series of AVCL task-level

113

behaviors is processed using normal XSLT iteration, control parameter information from

one behavior is not retained for use by templates processing subsequent behaviors. If a

MakeDepth behavior is encountered, the commanded depth is not ordinarily retained

outside of the original MakeDepth XSLT template and is therefore not available when a

Waypoint behavior is encountered. In this case the generated waypoint command will

not accurately reflect the intent of the AVCL task-level behavior script.

This difficulty was overcome through the development of an XSLT

programming pattern that achieves the functionality of mutable variables using XSLT

template parameters. Parameter values are updated as a document is processed by

explicitly controlling iteration rather than utilizing XSLT’s default iteration model.

Described in pseudocode in Figure 5.3, the simulated mutable variable algorithm

intentionally applies templates one at a time. This differs significantly from the more

common pattern which relies on the XSLT processing engine to apply templates to

multiple elements matching a single XPath expression. At the top level, the stylesheet

applies the appropriate template for the first task-level behavior. All potentially mutable

variables are included in the initial template application as parameters with default

values. Templates then instantiate internally immutable variables corresponding to each

parameter and assign values to variables based on the content of the behavior element

being processed. Variables corresponding to parameters whose value is updated by the

task-level behavior being processed are set to the new value. For all others the existing

parameter value is used. After generating any required output, the template invokes the

appropriate template for the current element’s next sibling. The variables instantiated by

the current template are used as the parameters to the next template. In this way task-

level behaviors are processed in order and information is maintained and updated along

the way.

Using this new mutable-variable pattern, the templates for AVCL

behaviors such as MakeDepth, MakeAltitude, ObtainGPS, SetPower and MakeSpeed

update their respective command parameter without affecting others. In the AVCL-to-

ARIES translation stylesheet, seven of the 11 ARIES waypoint fields listed in Table 5.2

are directly or indirectly maintained in this manner. Exceptions are the Cartesian

coordinates that are specified in the Waypoint behavior, and the waypoint time out and

114

GPS popup duration which are computed during translation based on the current vehicle

state. The most recently ordered horizontal position is maintained as well, so that the

waypoint time out values can be automatically generated and the actual location of

positions described in relative terms can be determined.

Figure 5.3. Algorithm for Achieving Mutable Variables in XSLT using Template

Parameters and Explicitly Controlled Iteration

Also worth noting is the use of XSLT to detect mission programming

errors and mission-vehicle incompatibilities. Despite the intended application of AVCL

to arbitrary vehicles, it is not difficult to define an AVCL mission that cannot be executed

on a specific vehicle. The ARIES, for instance, is not hover-capable, so AVCL task-level

behavior scripts that include Hover behaviors are not compatible with the ARIES. The

Hover template in the AVCL-to-ARIES stylesheet is used to identify the incompatibility

and notify the operator so that corrections can be made before the script is used with an

actual vehicle. Other common incompatibilities include the attempted use of open-loop

or closed-loop / open-ended behaviors. In some cases errors of this sort are not only

detectable but may also be correctable by the stylesheet through the use of dead

reckoning to convert closed-loop / open-ended behaviors to waypoints.

begin XSLT processing
 variable B1 = the first task-level-behavior
 apply template for B1
 with default parameters d1 to dn
end XSLT processing

begin template for task-level-behavior Bi
 with parameters p1 to pn
 for k = 1 to n
 variable vk
 if Bi updates pk
 vk = new_pk
 else
 vk = pk
 generate required output for Bi
 apply template for Bi+1
 with parameters v1 to vn
end template

115

Despite the apparent simplicity of ARIES waypoint lists, their generation

from AVCL task-level behavior scripts using XSLT is not as straightforward as it might

initially appear. The immutability of XSLT variables and the existence of AVCL

behaviors that are not compatible with the ARIES vehicle are both issues that must be

dealt with. These issues, however do not inhibit the applicability of the proposed

common data model to express ARIES waypoint lists. Ultimately, the correlations shown

in Figure 5.4 are used to map content from AVCL task-level behaviors to the ARIES

UUV waypoint fields. Solid lines indicate task-level behavior content that is mapped for

every instance of that particular behavior—that is, content that is always present and

therefore always used in the next generated waypoint. Dashed lines, on the other hand,

indicate mappings that apply only if the relevant optional content is present in the task-

level behavior.

Figure 5.4. Data Mappings from AVCL Task-Level Behaviors to ARIES UUV

Waypoint Fields

116

d. Conversion of AVCL for the Seahorse UUV
Like ARIES missions, Seahorse UUV missions take the form of a

command script wherein each task is completely self contained. This implies that many

of the translation issues and their means of resolution are similar to those of ARIES. In

particular, the simulation of mutable variables along with the detection (and possible

correction) of mission programming errors described in the preceding section are both

used extensively in the AVCL-to-Seahorse translation stylesheet. Additionally since

Seahorse uses latitude and longitude to specify absolute positions and Cartesian

coordinates for relative positions the previously discussed XSLT extension mechanism is

used to implement Equations 5.3 and 5.4 for the purpose of converting AVCL Cartesian

positions for use by Seahorse.

 02
360 Lat

R
xLat +=

π
 (Eq. 5.3)

 () 0cos2
360 Lon

LatR
yLon +=

π
 (Eq. 5.4)

This is not to say that XSLT stylesheets which translate AVCL for the

Phoenix and ARIES vehicles encountered and resolved all issues required for the

successful translation of AVCL for the Seahorse. On the contrary, the Seahorse scripting

language poses several unique challenges. In particular, despite the fact that ARIES

commands are inherently different than AVCL task-level behaviors, they are designed to

control similar aspects of vehicle action in a similar fashion. Seahorse tasks, on the other

hand, do not necessarily operate in the same way, often packaging implied vehicle

actions differently. The GPS Fix order, for example, has a Return to Starting Point

parameter that can be used to direct the vehicle to return to the previous waypoint upon

obtaining the fix. In some cases Seahorse tasks imply vehicle actions that do not directly

correspond to AVCL task-level behaviors (e.g., surface for the specific purpose of

communicating). Other tasks include implicit data-gathering instructions (e.g., the

Collect SVP parameter of the Surface Comms order that can direct the vehicle to collect

sound velocity profile data while surfacing). All of these situations must be accounted

for in a stylesheet intended to generate Seahorse scripting language.

117

In some cases a default value can be used (e.g., it might be acceptable to

always order the vehicle to collect the sound speed profile while surfacing). In others the

organization of the AVCL task-level behavior script can be used to implicitly handle the

situation in an acceptable way. Figures 5.5 and 5.6 provide an example resolution of this

issue. Figure 5.5 depicts an AVCL behavior sequence ordering the vehicle to transit to a

waypoint, surface for one minute and return to the previous waypoint. The most concise

way for a Seahorse script to express this is to use a Waypoint Navigation order followed

by a Surface Comms order with the Return to Starting Point parameter set to true.

However, generation of this sequence from the XSLT stylesheet requires an explicit

check to see if the MakeDepth and Wait behaviors are immediately followed by a

Waypoint returning the vehicle to the previous point. It is simpler to set the Return to

Starting Point parameter to false for all Surface Comms tasks and process the subsequent

Waypoint separately. This results in the Seahorse task sequence depicted in Figure 5.6

which commands the desired behavior. This pattern allows for a simpler stylesheet since

it can effectively ignore issues that might otherwise require significant special handling.

Figure 5.5. An AVCL Task-Level Behavior Sequence Ordering a UUV to Proceed to a

Waypoint, Surface, and Return to the Previous Waypoint and Depth

<Waypoint>
 <LatitudeLongitude
 latitude="30"
 longitude="-118"/>
 <Depth value="12"/>
 <SetPower>
 <AllPropellers value="75"/>
 </SetPower>
</Waypoint>
<MakeDepth value="0"/>
<Wait value="60"/>
<Waypoint>
 <LatitudeLongitude
 latitude="30"
 longitude="-118"/>
 <Depth value="12"/>
</Waypoint>

118

Figure 5.6. An XSLT-Generated Seahorse UUV Task Sequence Equivalent to the

Task-Level Behavior Sequence of Figure 5.5

Unfortunately, not every Seahorse task construct can be dealt with

implicitly or through the use of defaults, so it is often necessary to perform tests on the

neighbor, ancestor and descendant elements in order to resolve the output requirements of

the current element. It is often possible to infer the proper interpretation of an element

from the neighboring task-level behaviors as is the case for the Waypoint behavior.

Since the last task in a Seahorse mission must be the rendezvous order, if a Waypoint

behavior has no following Waypoint siblings, it is translated as a rendezvous order.

Otherwise it is translated as a Waypoint Navigation order. In a similar fashion, the

siblings of a MakeDepth behavior with a value of zero can be checked to determine

whether it is to be interpreted as a Surface Comms order (if the behavior is immediately

Start_Order : Waypoint_Navigation_Order
Scheduling_Info_Is_Timed : False
Destination_Latitude : 30 Degrees
Destination_Longitude : -118 Degrees
Transit_Mode : Steer_to_Line
Transit_Depth : 12 Meters
Transit_Speed_In_Water : 5.25
Use_SSS : True

Start_Order : Surface_Comms_Order
Scheduling_Info_Is_Timed : False
Collect_SVP : True
Return_to_Depth : False
Return_to_Starting_Point : False
Take_GPS_Fix : False
Perform_RF_Comms : True

Start_Order : Waypoint_Navigation_Order
Scheduling_Info_Is_Timed : False
Destination_Latitude : 30 Degrees
Destination_Longitude : -118 Degrees
Transit_Mode : Steer_to_Line
Transit_Depth : 12 Meters
Transit_Speed_In_Water : 5.25
Use_SSS : True

119

followed by a Wait, WaitUntilTime or SendMessage behavior), whether a GPS Fix is to

be taken while on the surface (if there are no sibling behaviors that will direct the vehicle

to submerge between the MakeDepth behavior and a GpsFix behavior), or whether a

rendezvous order is to require a GPS fix at the destination (when the last Waypoint

behavior in the AVCL task-level behavior script has a following GpsFix behavior).

A few aspects of some Seahorse orders cannot be inferred from other

behaviors in the AVCL script, so more interpretation is required to accurately translate

AVCL behavior scripts for the Seahorse. For example, the Surface Comms order can

either allow or disallow the use of radio frequency communications. While it may make

sense to always allow radio communications, this comes at the expense of sacrificing

vehicle capabilities. The same can be said of the ability to order the vehicle to collect

sound velocity profile data while surfacing.

In order to deal with data format elements that are truly vehicle-specific,

the AVCL task-level behavior set includes a MetaCommand behavior. This behavior has

no direct effect on any vehicle control parameters, so it can often be ignored during

translations. It does, however, provide a means of capturing vehicle-specific information

that is not representable in other AVCL structures. XSLT stylesheets translating AVCL

check the name and content attributes of MetaCommand behaviors to determine if they

relate to the stylesheet’s target language and adjust their processing accordingly. For

instance, a MetaCommand behavior with a name attribute value of “obtainSVP” tells the

AVCL-to-Seahorse stylesheet how to set the Collect SVP parameter of the next Surface

Comms order (based on the value of the MetaCommand behavior’s content attribute).

Stylesheets targeted to vehicles other than Seahorse will ignore the MetaCommand

behavior. If the stylesheet does not encounter the MetaCommand behaviors relating to

its target data format before generating the content to which they apply, the stylesheet can

still use default values (“true” for both the Perform Radio Frequency Comms and Collect

SVP parameters of the Seahorse Surface Comms order). The MetaCommand name

attribute values that the AVCL-to-Seahorse stylesheet supports and their corresponding

meanings are listed in Table 5.6.

120

Name Attribute
Value

Possible Content
Attribute Values

Description

useSSS true or false The value of the next Waypoint Navigation order's
Use SSS parameter.

rfComms true or false The value of the next Surface Comms order's Perform
RF Comms parameter.

obtainSVP true or false The value of the next Surface Comms or GPS Fix
order's Collect SVP parameter.

rendezvous [no value] Indication that the next Waypoint behavior is to be
interpreted as the last one.

Table 5.6. AVCL MetaCommand Name Attribute Values Used by the XSLT Stylesheet
Targeted to the Seahorse UUV Tasking Language

Data mappings used in the translation of AVCL task-level behaviors to

Seahorse UUV orders are depicted in Figures 5.7 through 5.9. As with Figure 5.4, solid

lines represent mappings from required task-level behavior content to the target Seahorse

orders while dashed lines indicate mappings of optional content. Since a large variety of

task-level behavior content is potentially mappable to multiple Seahorse tasks, the actual

mapping utilized for a particular task-level behavior depends upon the type of Seahorse

order that is required. In many cases data is saved for use in the next generated Seahorse

order. In other cases the context of the particular behavior (i.e., the types and content of

neighboring behaviors) dictates the immediate generation of a particular Seahorse order.

Regardless, the most current data is always used for any Seahorse order that is generated.

Figure 5.7. Data Mappings from AVCL Task-Level Behaviors to the Seahorse UUV

Waypoint Order

121

Figure 5.8. Mappings from AVCL Task-Level Behaviors to Seahorse GPS Fix, Surface

Comms and Station Keep Orders

Figure 5.9. Mappings from AVCL Task-Level Behaviors to the Seahorse Rendezvous

Order

122

The syntax of the Seahorse UUV tasking language is significantly more

complex than those of the Phoenix and ARIES vehicles. Nevertheless, an XSLT

stylesheet can be designed to translate AVCL task-level behavior scripts for the Seahorse

UUV. The implementation of more robust content checks within the stylesheet and the

use of the AVCL MetaCommand to capture information specific to the Seahorse vehicle

facilitates accurate translation despite the increased complexity of the target language.

e. Conversion of AVCL for the REMUS UUV
Despite its increased complexity, the REMUS command language does

not pose any specific translation difficulties whose ultimate resolution method has not

already been discussed. In fact this is not surprising since the REMUS command

language is a task scripting language with identical execution semantics to ARIES

waypoint lists and Seahorse task scripts (i.e., tasks are executed in order and do not

commence until the preceding task completes). Additionally, many of the 13 available

REMUS objectives are similar enough to allow their generation by the same XSLT

stylesheet templates (e.g., there are three REMUS waypoint objectives, and four mission-

start objectives). The translation of AVCL task-level behavior scripts for the REMUS

vehicle differs only by the increased use of the XSLT mutable-variable pattern, behavior-

context checking, and AVCL MetaCommand behaviors.

 MetaCommand behaviors, in particular, play an increased role in the

AVCL-to-REMUS stylesheet and is summarized in Table 5.7. As with the AVCL-to-

Seahorse stylesheet, MetaCommand behaviors are used to indicate the values of vehicle-

specific REMUS command parameters. Unlike the Seahorse command language,

however, the REMUS language contains not only vehicle-specific objective parameters,

but vehicle-specific objectives as well. There is, for example, no AVCL task-level

behavior that can capture the semantics of the REMUS Wait Prop objective. Five of the

13 objective types of Table 5.7 do not translate meaningfully into AVCL task-level

behaviors, but it is a natural extension of the previous MetaCommand use to indicate the

intended inclusion of these objectives to the XSLT stylesheet processor with

MetaCommand behaviors.

123

Name Attribute Value

Possible Content
Attribute Values

Description

calibrateDepth yes or no Value for the launch command "Auto calibrate
depth sensor" parameter.

clearCalibration yes or no Value of the next compass calibration
command's "Clear calibration?" parameter.

compassCalibration yes or no Calls for a compass calibration command at the
current position in the script.

depth positive float Transponder depth for a transponder location.

hardware String Location type and label for a transponder
location.

latitude float Latitude of a transponder.
longitude float Longitude of a transponder.

moveAway positive float Value of the next compass calibration command
"Move away duration (seconds)" parameter

sidescanRange same, 5, 10, 20,
30, 40, 50 or 75

Value of the next Navigate, Dead Reckon or
Transponder Home command "Sidescan
Range" parameter.

trackPingInterval positive float
Value of the next Navigate, Dead Reckon or
Transponder Home command "Track ping
interval (seconds)" parameter.

transponderLabel String Transponder location label for the next
Transponder Home command.

triangleAltitude positive float Value to use for the next triangle altitude control
"Triangle altitude" parameter.

triangleMinimum positive float
Value to use for the next triangle depth or
altitude control "Triangle minimum (m)"
parameter.

triangleMaximum positive float
Value to use for the next triangle depth or
altitude control "Triangle maximum (m)"
parameter.

triangleRate positive float
Value to use for the next triangle depth or
altitude control "Triangle rate (m/min)"
parameter.

verifyTransponderRange yes or no Value for the launch command "Verify range to
nearest transponder" parameter.

waitDepth positive float Calls for a Wait Depth command at the current
script location (should follow set position).

waitMagnet none Calls for a Wait Magnet command at the current
script location (should follow set position).

waitProp positive integer Calls for a Wait Prop command at the current
script location (should follow set position).

waitRun none Calls for a Wait Run command at the current
script location (should follow set position).

waypointNavMode
best, deadReckon
or
transponderHome

Directs the type of waypoint command to use.

Table 5.7. AVCL MetaCommand Name Attribute Values Used by the XSLT Stylesheet
Targeted to the REMUS UUV Family

124

MetaCommand behaviors are also used to indicate desired vehicle-specific

control modes. Given their other applications, the use of a MetaCommand behavior to

note the intended use of a Navigate objective rather than a Dead Reckon or Transponder

Home objective, for example, seems reasonable. Additionally, REMUS-specific triangle

vertical-control modes (which direct the vehicle to vary depth or altitude between upper

and lower bounds) are captured by MetaCommand behaviors where the name attribute

correlates to the control mode parameter (e.g., triangle minimum) and the content

attribute is set to the desired parameter value.

A final use of MetaCommand behaviors to capture REMUS-specific

information is the specification of the locations of the transponders that the REMUS

vehicles utilize for position tracking. Each transponder location is encoded with four

MetaCommand behaviors—one for the type and label, and one each for the latitude,

longitude and depth. These particular MetaCommand behaviors are parsed by the

stylesheet before any REMUS objectives are generated in order to construct the mission

file’s locations section. These are the only locations required when generating REMUS

missions from AVCL task-level behavior scripts since all other geographic positions

within the script are included in their respective commands.

As with the Seahorse-specific MetaCommand behaviors, those relating to

REMUS objectives can be effectively ignored by stylesheets targeted to vehicles outside

of the REMUS UUV family. Missions can therefore be defined from the start with multi-

vehicle compatibility in mind even when vehicle-specific data must be generated during

the translation to one or more target vehicles.

To summarize, AVCL MetaCommand behaviors are used to encode

REMUS-specific objective parameter values, commands and navigation transponder

locations, and also to differentiate between the available REMUS waypoint types. This

extensive use of MetaCommand behaviors does not come without overhead, most

frequently in the form of additional mutable variable requirements. Of the 18 mutable

variables used to implement the AVCL-to-REMUS stylesheet, nine maintain information

that is inferred from MetaCommand content. Fortunately, since all mutable variables are

125

handled simultaneously (i.e., the algorithm is not reimplemented for each variable),

additional mutable variables do not add significantly to the overall stylesheet complexity.

Mappings used to generate REMUS missions from AVCL task-level

behavior scripts are depicted in Figures 5.10 through 5.12. The commands not presented

are generated entirely from MetaCommand content (or default values if the expected

MetaCommand behaviors are not encountered before the objective is to be generated)

with the exception of the Navigate Rows objective, which is never generated by the

AVCL-to-REMUS stylesheet since potentially applicable AVCL CompositeWaypoint

behaviors are converted to a series of individual Waypoint behaviors prior to translation.

Figure 5.10. AVCL Data Mapping to the REMUS UUV Set-Position and Surface

Objectives

126

Figure 5.11. AVCL Data Mapping to the REMUS UUV Navigate and Dead-Reckon

Objectives

Figure 5.12. AVCL Data Mapping to the REMUS UUV Transponder-Home Objective

127

2. Generation of Data-Model-Compliant XML from Vehicle-Specific
Text Documents

a. Context-Free-Grammar-Based Translation
The preceding discussion illustrates the utility of XSLT in translating data-

model-compliant XML to arbitrary text-based data formats used by autonomous vehicles.

This is, however, only half the problem. In order to use a common data model as a

bridge between vehicle-specific data formats, it is necessary not only to translate data-

model-compliant documents for specific vehicles, but to convert vehicle-specific data

into data-model-compliant documents. Since vehicle-specific data formats are generally

not XML-based, an XSLT stylesheet cannot be used for the conversion of vehicle-

specific data to common data-model-compliant XML. There is, in fact, no generally

recognized tool of choice suitable for this purpose. A simple observation, however, can

be made that vehicle-specific data formats do impose rigorously defined lexical,

semantic, and structural constraints even though they are not XML-based. This

observation provides the basis for a methodology for automated parsing and conversion

of vehicle-specific data to data-model-compliant XML.

More formally, each vehicle-specific data format is actually a context-free

language. Mathematically speaking a context-free language is the set of strings derivable

from a context-free grammar (Hopcroft, et al., 01). The implication of the previous

statements is that there exists a context-free grammar corresponding to any vehicle-

specific data format in which we might be interested. It stands to reason that the context-

free grammar can be used to both generate and parse instances of the vehicle-specific

format.

A context-free grammar is formally specified with four components: V, T,

P and S, where V is a set of variables, T the set of terminal symbols in the context-free

language, P a set of production rules, and S the set of available start symbols (a non-

empty subset of V) (Hopcroft, et al., 01). As a simple example, consider the productions

()→P and ()PP → where P is a variable, ‘(’ and ‘)’ are terminal symbols and the

production symbol (→) means that the variable on the left can be expanded into the

sequence of terminal symbols and variables on the right. These particular productions are

capable of generating all strings of balanced parentheses (i.e., strings of the form

128

“((()))”). An appropriate context-free grammar for the context-free language consisting

of all balanced parentheses strings can therefore be fully defined using Equation 5.5.

Simplicity of the example notwithstanding, context-free grammars can be a powerful tool

for recursively defining a variety of complex languages. In fact context-free grammar

production rules of the form described above provide the basic building blocks of the

XML DTD and can be used to define high-level programming languages as well

(Hopcroft, et al., 01).

 { } { } () (){ } { }()PPPPPG ,,,)(,, →→= (Eq. 5.5)

The use of context-free grammars to support the translation of vehicle-

specific data into AVCL consists of three steps: definition of a Chomsky-Normal-Form

grammar corresponding to the vehicle-specific data format, use of the Cocke-Younger-

Kasami algorithm to generate a parse tree corresponding to the vehicle-specific data, and

the conduct a depth-first parse-tree traversal to convert it to an equivalent AVCL

document (Davis, 05).

The productions of a Chomsky Normal Form context-free grammar have

three significant characteristics:

• There are no useless symbols (i.e., variables or terminal symbols that do
not appear in any terminal-string derivation beginning with the start
symbol).

• There are no ε (null) productions (i.e., those of the form ε→A).

• All productions are of the form BCA→ or aA→ where A, B and C are
variables and a is a terminal symbol.

It can be proven that for any context-free language not containing the empty string (ε),

there exists a Chomsky Normal Form context-free grammar capable of generating that

context-free language (Hopcroft, et al., 01).

From a practical standpoint, defining a context-free grammar to generate a

particular vehicle-specific data format involves determining the terminal symbols and

writing the productions. The set of terminal symbols can consist solely of numbers as is

the case with ARIES waypoint lists or can include keywords, symbols and numbers as in

the Phoenix, Seahorse and REMUS command languages. Production definition can be

fairly arbitrary. Nevertheless, the production rules ultimately determine the structure of

129

the parse tree, so it is advisable to utilize rules that have intuitive meaning. The

production rules of Figure 5.13, for instance, can be used to derive the parse tree of

Figure 5.14 corresponding to a single Phoenix waypoint behavior. Ultimately, defining

meaningful production rules facilitates the final step of the translation process. Defining

production rules in an intuitive manner also allows the reuse of variables throughout the

set of production rules (e.g., the Position2D and Position3D variables can be used in any

production using a two dimensional or three-dimensional position respectively).

Figure 5.13. Context-Free Grammar Production Rules for Generating a Phoenix UUV

Waypoint Behavior

Figure 5.14. A Parse Tree Corresponding to a Single Phoenix UUV Waypoint Behavior

Based on the Production Rules of Figure 5.13 (After: Davis, 05)

The second step in the translation process is the application of the Cocke-

Younger-Kasami algorithm (Figure 5.15) to a context-free language instance. The

Cocke-Younger-Kasami algorithm uses dynamic programming (Corman, et al., 90) to

Command → WaypointToken + Position3D
Position3D → Position2D + Double
Position2D → Double + Double
WaypointToken → “WAYPOINT”
Double → any floating point number

130

parse context-free language instances in a bottom up fashion. The result of the algorithm

is a binary parse tree representing a context-free grammar derivation of the context-free

language instance (for the sake of simplicity, the algorithm as depicted in Figure 5.15

tests for context-free language membership but does not actually generate a parse tree).

The Cocke-Younger-Kasami algorithm was chosen for parsing context-free language

instances for two reasons. First it is among the more efficient context-free language

parsing algorithms available, having a computational complexity of ()3nO where n is the

length of the string being parsed (Corman, et al., 90). There are, in fact, algorithms

available that are more efficient for certain context-free languages, but the Cocke-

Younger-Kasami is a good choice if reasonable performance is required for all context-

free languages. The second reason for using the Cocke-Younger-Kasami algorithm is

that it is universally applicable. That is, it can be used to parse an instance of any

Chomsky Normal Form context-free grammar. This relative language-independence is

one of the most significant strengths of this translation approach.

Figure 5.15. The Cocke-Younger-Kasami Algorithm for Parsing Chomsky-Normal-

Form Context-Free Language Instances (After: Hopcroft, et al., 01)

Let the input string be a sequence of n letters a1…an
Let V1…Vr be the set of CFG symbols (V)
Let S be the set of indices of V corresponding to

context-free grammar start symbols
Let P[n, n, r] be a Boolean array initialized to false

For i = 1 to n
 For each unit production Vj → ai
 P[i, 1, j] = true

For i = 2 to n – Length of span
 For j = 1 to n – i + 1 – Start of span
 For k = 1 to i – 1 – Partition of span
 For each production VA → VBVC
 if P[j, k, B] == true and
 P[j + k, i – k, C] == true
 then P[j, i, A] = true

if P[1, n, x] is true (x is an element of S)
 then the string is in the context-free language
 else the string is not in the context-free language

131

The final step in the translation process is converting the parse-tree

representation of a vehicle-specific document to AVCL. Conversion of a parse tree to

AVCL relies on a depth-first traversal of the tree. As with XSLT processing of an XML

document, templates defining what actions are to be taken are applied at each node.

Actions in most cases call for recursive processing of the current node’s left and right

child, and in some cases include the generation of AVCL content.

As an example, upon arriving at the Command node of Figure 5.14, the

applicable template calls for the generation of an AVCL Waypoint behavior

corresponding to the Phoenix waypoint behavior. Since the structure of the parse tree is

deterministic, it is unlikely that further recursive processing of the subtree will be

required. All of the information required to generate the AVCL task-level behavior is in

a known location relative to the current node and can be accessed directly. For instance

the type of command is always specified by the left child of a Command node. Once the

translator is aware that the current node contains a waypoint behavior, the content of the

right subtree is known as well.

A noteworthy characteristic of the depth-first traversal is that the overall

instance document is processed in order. For vehicle-specific data formats along the lines

of those used in the ARIES and Seahorse UUVs, the corresponding AVCL is therefore

generated in the same order. However, the sequence and structure of the AVCL

corresponding to more complex data formats such as that of the REMUS family of

vehicles may differ significantly from that of the vehicle-specific document. Since the

parse-tree traversal is fixed, AVCL generation must be arbitrary (i.e., it must be possible

to generate the AVCL document in any order). XML data binding facilitates this sort of

document generation by creating the document as in-memory objects and deferring

output serialization until tree construction is complete. Since the entire document is

maintained in memory throughout the process, it is a fairly simple matter to access or

modify existing content, add new content, and move or copy existing content from one

location in the document to another.

Programmatic implementation of individual context-free grammars is

accomplished through the definition of a dictionary class specific to the context-free

132

grammar that lexically maps tokens to their unary production rule, along with a context-

free-grammar-specific class containing the binary production rules of the grammar. The

implementation documented here is written in Java. In effect the dictionary and

production classes perform the same function for vehicle-specific data formats that the

XML schema does for AVCL—they formally constrain the structure and content of

compliant documents and provide a means of automatically loading the document into a

semantically meaningful programmatic data structure.

Implementation of the parse-tree translator is accomplished through the

definition of a context-free-grammar-specific translator class. Just as the use of

dictionary and production rule classes to constrain non-XML data is analogous to the use

of an XML schema, the function of the translator class is analogous to that of the XSLT

stylesheets discussed in the previous section. The parse-tree translators, however,

perform their function in a different manner. XSLT stylesheets can traverse tree

contained in the source document arbitrarily but must generate the output document

serially. Conversely, the depth-first traversal of the parse tree by the context-free

grammar translators uses only serial processing of the source document but allows

arbitrary access to the output document.

To summarize, context-free grammars provide the basis for automated

translation from arbitrary text-based, vehicle-specific data formats to common

autonomous vehicle data-model-compliant XML. Analogous to the XSLT-based

translations from AVCL to vehicle-specific formats, context-free-grammar-based

translation of vehicle-specific formats to AVCL completes the translation chain between

arbitrary text-based, vehicle-specific data formats.

b. Conversion of Phoenix UUV Command Files to AVCL
Of the four text-based, vehicle-specific data formats discussed in the

previous section, the Phoenix behavior scripting language is the easiest to generate from

AVCL task-level behavior scripts. The characteristics that make this so, namely the

frequent one-to-one correlation between individual behaviors and the semantic similarity

between the languages, also simplifies the translation of Phoenix behavior scripts to

AVCL. In fact, the increased flexibility of AVCL in representing various parameter

configurations enables a one to one mapping from Phoenix behaviors to AVCL task-level

133

behaviors in all but the most unusual cases. A summary of the Phoenix-to-AVCL

translator mappings from the most commonly utilized Phoenix behaviors to AVCL is

provided in Table 5.8.

Phoenix
Behavior

AVCL Task-
Level Behavior

Notes

Depth MakeDepth Units converted from feet to meters.
GPS GpsFix None
Heading MakeHeading None

Hover Hover Units converted from feet to meters.
May include depth, heading and standoff.

Lateral MoveLateral None
Mission-Script MissionScript None
Planes SetPlanes None
Position SetPosition Units converted from feet to meters.
Quit Quit None
Rotate MoveRotate None
RPM SetPower RPM converted to percent of maximum.
Rudder SetRudder None
Thrusters-Off Thrusters Set the “enabled” attribute to “false.”
Thrusters-On Thrusters Set the “enabled” attribute to “true.”
Wait Wait None
WaitUntilTime WaitUntilTime None

Waypoint Waypoint Units converted from feet to meters.
May include depth, speed and standoff.

Table 5.8. Mappings from Phoenix UUV behaviors to AVCL Task-Level Behaviors

The context-free grammar upon which the Phoenix-to-AVCL translator

relies consists of 92 unary production rules, 39 binary production rules and 32 variables.

The unary productions are capable of generating floating point numbers and white-space-

free strings as well as the language’s 90 behavior keywords. The unexpectedly large

number of keywords arises from the availability of multiple keywords to specify the same

behavior (e.g., a the Heading behavior can be ordered with a “heading,” “course,” or

“yaw” keyword). There are a number of behaviors in the Phoenix behavior scripting

language that are not directly representable in AVCL. By and large, these behaviors

support mission and control testing in a virtual environment (Brutzman, 94). Since they

do not affect vehicle control these behaviors are not included in AVCL although their

functionality has been incorporated directly into the AUVW (Davis and Brutzman, 05).

134

If it is desirable to identify the presence of these behaviors in the generated AVCL

document, they can be included as MetaCommand behaviors.

c. Conversion of ARIES UUV Command Files to AVCL

The most compact vehicle-specific context-free grammar developed for

this research is the one corresponding to ARIES UUV waypoint lists. This is not

surprising since all terminal symbols are numbers and every line of the waypoint list has

the same format (with the exception of the first line of the file). A context-free grammar

corresponding to the ARIES waypoint list context-free language, in fact, can be fully

defined using only one unary production, 14 binary productions and 13 variables.

The actual translation of parse trees corresponding to ARIES waypoint

lists into AVCL is also straightforward. In most cases, every element of an ARIES

waypoint designation can be captured as a Single AVCL Waypoint. The only exceptions

are waypoints that call for differential propeller settings, which require the individual

propeller commands to be specified prior to the Waypoint command. Figure 5.16 shows

the AVCL task-level behaviors corresponding to the translation of two ARIES waypoints.

The first ARIES waypoint calls for both propellers to be powered at three volts (60

percent of maximum power) so the propeller setting is included in the generated

Waypoint behavior. The second ARIES waypoint calls for the port propeller to be

powered at 75 percent and the starboard propeller to be powered at 50 percent. In order

to capture both commanded settings, they are placed immediately prior to (rather than

within) the AVCL Waypoint behavior. Given the behavior-activation semantics of

AVCL, this is equivalent to declaring the propeller orders within the Waypoint behavior.

d. Conversion of Seahorse UUV Command Files to AVCL

With 136 binary production rules, 46 unary production rules and 159

variables, the context-free grammar developed to support parsing of Seahorse mission

files is the most complex one implemented in the course of this work. The complexity of

this particular context-free grammar is brought about by the requirement to deal with

parameters that may be optional, interchangeable or that may have more than one

potential form. Nevertheless, use of the context-free grammar for translation of Seahorse

mission files to AVCL is not negatively impacted.

135

Figure 5.16. An AVCL Task-Level Behavior Sequence Corresponding to Two ARIES

UUV Waypoints

Despite the increased complexity of the Seahorse context-free grammar,

conversion of generated parse tree to AVCL is not difficult. Each task is contained

within a single subtree, so once the subtree for a particular task is encountered it is a

simple matter to gather the associated parameter values. Once the parameter values are

collected AVCL task-level behaviors corresponding to the Seahorse order can be

generated. Figures 5.17 through 5.21 show the specific AVCL behaviors that are

generated for each Seahorse order, and from where their attribute values originate.

In general the sequence of AVCL task-level behaviors corresponding to a

particular Seahorse order tends to be intuitive and the overall pattern is fairly consistent.

MetaCommand behaviors (if required) are always placed first in the sequence. This

<Waypoint>
 description="Aries absolute position waypoint">
 <XYPosition x="325.0" y="-25.0"/>
 <Depth value="25.0"/>
 <SetPower>
 <AllPropellers value="60.0"/>
 </SetPower>
 <ObtainGps value="true"/>
 <Standoff value="7.5"/>
 <TimeOut value="57.45"/>
</Waypoint>
<SetPower>
 <PortPropeller value="75.0"/>
</SetPower>
<SetPower>
 <StarboardPropeller value="50.0"/>
</SetPower>
<Waypoint
 description="Aries absolute position waypoint">
 <XYPosition x="425.0" y="-25.0"/>
 <Altitude value="15.0"/>
 <ObtainGps value="false"/>
 <Standoff value="10.0"/>
 <TimeOut value="66.6"/>
</Waypoint>

136

ensures that the content is available when subsequent behaviors are processed during

transformation to another data format (e.g., the rfComms MetaCommand behavior is

processed before the surfacing MakeDepth behavior). The AVCL behavior activation

scheme dictates that depth and speed-related behaviors typically follow the

MetaCommand behaviors since they potentially affect subsequent Waypoint, Loiter or

Hover behaviors. Waypoint or Loiter behaviors follow the depth and speed behaviors.

Finally, any post-order behaviors are generated. The most common behaviors falling into

this category are those supporting the return-to-depth, return-to-start and post-arrival-

GPS parameters of the Seahorse Surface Comms, GPS Fix and Rendezvous orders.

Figure 5.17. Data Mapping from a Seahorse UUV Waypoint Navigation Order to

AVCL Task-Level Behaviors

Although similar, the mappings from Seahorse orders to AVCL task-level

behaviors differ from the reverse mappings in one regard. Whereas AVCL content is

often optional mapped only when present, all Seahorse order parameters are required, so

the mapping always occurs. Depending on whether a particular parameter value equates

to the AVCL default behavior, the corresponding task-level behaviors (or their content)

may or may not be generated. Good examples of this are provided by the Return to

137

Depth and Return to Start parameters of the Surface Comms order (Figure 5.19). The

task-level behaviors associated with these parameters are generated only if the value of

the corresponding parameter is set to “true” since a setting of “false” is best represented

by the absence of the corresponding task-level behavior. Optional behaviors are

indicated in the figures by dashed borders.

Figure 5.18. Data Mapping from a Seahorse UUV Station Keep Order to AVCL

Task-Level Behaviors

Figure 5.19. Data Mapping from a Seahorse UUV Surface Comms Order to AVCL

Task-Level Behaviors

138

Figure 5.20. Data Mapping from a Seahorse UUV GPS Fix Order to AVCL Task-Level

Behaviors

Figure 5.21. Data Mapping from a Seahorse UUV Rendezvous Order to AVCL

Task-Level Behaviors

e. Conversion of REMUS UUV Command Files to AVCL
Significantly simpler than the context-free grammar designed for the

Seahorse UUV, the context-free grammar implemented for the tasking language of the

REMUS family of UUVs consists of 58 binary production rules, 119 unary production

rules (as with Phoenix behaviors there are often multiple keywords with the same

139

meaning) and 52 variables. A noteworthy aspect of the parse trees generated using this

context-free grammar is that the left subtree of the root node contains all of the locations

(including those specifying transponder locations). The right subtree of the root node, on

the other hand, contains all of the objectives. The depth-first parse tree traversal used

during the translation process ensures that all locations are processed before any of the

objectives. This is important for two reasons. First, it facilitates the placement of

MetaCommand behaviors corresponding to the transponder locations at the beginning of

the AVCL task-level behavior script, which in turn facilitates processing them first when

transforming the task-level script back to a vehicle-specific format. Second, it ensures

the processing of location descriptions before objectives that may reference them.

The use of a separate locations section in REMUS mission files and the

use of position references and offsets introduce translator issues that were not

encountered during the implementation of the Phoenix, ARIES or Seahorse translators.

Relative positions and references, for instance, are included in the REMUS language in

order to simplify programming through reuse of individual positions, however

simplification is irrelevant to processing stylesheets and translators. For this reason all

positions in a REMUS mission file (both those defined in the locations section and those

defined in objectives) are converted to latitude and longitude—references and offsets are

removed. Also required during location processing is the generation of a lookup table.

As a location is processed, its type, label, latitude, longitude and transponder depth (if

included) are stored in a hash table (using the label as the key) for use when processing

objectives containing references to the position. Finally, the locations of navigation

transponders must be incorporated into the AVCL task-level behavior script. The

MetaCommand behaviors used for this purpose are generated as depicted in Figure 5.22.

After preprocessing the locations portion of the parse tree, translation of

the objectives subtree into AVCL task-level behaviors is not significantly more difficult

than translation of Seahorse orders. Of the 13 REMUS objective types, seven can be

mapped to the single AVCL task-level behavior indicated in Table 5.9. Four of these

map to MetaCommand behaviors that serve only to indicate the presence of the objective

in the objective list and the values of any parameters. The remaining objective types are

translated to AVCL task-level behaviors as depicted in Figures 5.22 through 5.24.

140

Figure 5.22. Data Mapping from a REMUS UUV Location Descriptor Defining the

Position of a Navigation Transponder to AVCL MetaCommand Behaviors

REMUS
Command

AVCL Task-Level
Behavior

Notes

End Quit None.
Include MissionScriptInline Must translate inline file as well.

Set Position SetPosition Compute latitude and longitude from Set Position
location and offset.

Wait Depth MetaCommand Set name attribute to "waitDepth.”
Set content attribute value to depth.

Wait Magnet MetaCommand Set name attribute to "waitMagnet.”

Wait Prop MetaCommand Set name attribute to "waitProp.”
Set content attribute to required revolutions per minute.

Wait Run MetaCommand Set name attribute to "waitRun.”
Table 5.9. Mappings from REMUS UUV Objectives to Single AVCL Task-Level

Behaviors

The task-level behavior sequences generated by the REMUS-to-AVCL

translator are similar to those generated by the Seahorse-to-AVCL translator in that there

are frequently behaviors that are generated only under certain circumstances. In the case

of scripts translated from REMUS missions, however, all of the optional behaviors are

MetaCommand behaviors that are used to capture information that cannot be represented

in AVCL (e.g., the triangle depth and altitude control information). There are no optional

141

actions in REMUS objectives along the lines of those implied by the Seahorse Surface

Comms order Return to Depth and Return to Starting Point parameters.

Figure 5.23. Data Mapping from a REMUS UUV Navigate, Dead Reckon or

Transponder Home Objective to AVCL Task-Level Behaviors

The AVCL task-level behavior sequences corresponding to REMUS

objectives follow the same general pattern as those generated from Seahorse orders.

MetaCommand behaviors are generated first, followed by depth and speed related

behaviors and finally, waypoint or other behaviors. When possible MetaCommand

behaviors intended to influence the semantics of another behavior, such as

142

MetaCommand behaviors that specify triangle altitude or depth control parameters, are

placed immediately prior to the behavior to which they relate. Organization of task-level

behavior sequences in this manner accurately captures the semantics of the original

REMUS objective and provides for an intuitive series of commands from the perspective

of the REMUS objective. It also arranges behaviors so that XSLT stylesheets translating

the sequence to vehicle-specific formats can process MetaCommand, depth, and speed

related behaviors before waypoint or other behaviors whose requirements they may

partially define.

Figure 5.24. Data Mapping from a REMUS UUV Navigate Rows Objective to AVCL

Task-Level Behaviors

143

D. BINARY DATA FORMATS

1. Overview

XSLT and context-free grammars provide straightforward mechanisms for

automated translations between common data-model-compliant XML and arbitrary text-

based, vehicle-specific data formats. The methods discussed thus far, however, are not

directly applicable to binary data formats such as JAUS. In order for the proposed

common autonomous vehicle data model to be applied to arbitrary vehicles, a mechanism

must be developed for the conversion of AVCL to binary data formats and vice versa.

XML is not a binary format, and there are no standards or tools along the lines of XSLT

capable of converting XML to an arbitrary binary format or creating XML from binary

data. Nevertheless, XML can be used as the basis of a mechanism for both conversions

required to support AVCL compatibility with these diverse data formats.

Figure 5.25. Data Mapping from REMUS UUV Compass Calibration and Surface

Objectives to AVCL Task-Level

144

The use of XML with binary data leverages the fact that both XML and binary

formats are nothing more than data encoding methods (a principle that is also true of

programming objects and context-free languages). Data can be represented in any of

these formats and the selection of the appropriate encoding depends on the usage

requirements. Binary data is often preferable for communications whereas XML is often

used when self-validation, web compatibility or platform independence is desired, and

programming objects are used within applications. Methods are also commonly available

for converting between various formats. XML data binding and DOM, for instance,

convert between XML and programming objects, serializers convert programming

objects to binary format for storage or transmission, and readers convert binary data to

programming objects.

The proposed method of fostering compatibility between binary formats and

AVCL leverages the general equivalence of various data encodings using an XML

encoding of the binary data. First the XML form of the binary data is transformed to or

from AVCL using XSLT. As indicated in Figure 5.26, which graphically depicts the

relationships between AVCL and XML-encoded JAUS messages, an XML schema is

defined for the XML version of the binary data format to be encoded and XML data

binding is used to create an API corresponding to the schema. A custom reader and

serializer can then read and write binary data to and from the schema-based programming

objects and XSLT stylesheets are used to convert the schema-governed JAUS-XML

documents to and from AVCL. Using this methodology conversion between AVCL and

any potentially compatible binary data format requires three steps:

1. Definition of a schema to constrain the XML encoding of the binary data.

2. Development of a reader and serializer to read and write binary data to and
from JAXB-derived programming objects.

3. Development of XSLT stylesheets to translate XML documents
corresponding to binary data to and from AVCL.

2. JAUS-XML Overview
Unlike AVCL, JAUS does not directly support scripting. Rather, the messages

that make up the implicit JAUS command set discussed in Chapter IV are transmitted

individually to immediately elicit vehicle activities. There is no JAUS construct along

the lines of an AVCL task-level behavior script for grouping a set of command messages

145

together. This difference between AVCL and JAUS is handled by the reader and

serializer, however, and does not pose a problem during translation.

Figure 5.26. XML-Based Translation between JAUS and AVCL

An individual JAUS message is encoded in XML with a Header element followed

by a message-type-specific element containing the actual message data. The Header

element shown in Figure 5.27 contains all of the information from the JAUS message

header fields (with the exception of the command code) and is common to all XML-

encoded message types. Data value ranges in the message header element are

constrained in accordance with (JAUS, 04-4). Additionally, a number of header fields

have fixed values (e.g., the version attribute of the MessageProperties element always has

a value of “3.2”) and are included for clarity. The command content of the message is

encoded as a message-type-specific message data element corresponding to one of the 22

message-types included in the schema. Some of these, such as the QueryHeartbeatPulse

element, are empty and serve only to identify the type of message (the command code

field of the binary JAUS message header). The message data elements for Query Class

messages, contain Boolean attributes identifying the specific data requested by the

message. Most message data elements corresponding to Command and Inform Class

messages contain child elements with command parameters (Command Class messages)

or vehicle state information (Inform Class messages). The content models of message

146

data elements for corresponding Command and Inform messages (e.g., Set Global Vector

and Report Global Vector) are, more often than not, identical.

Figure 5.27. An XML Encoding of a JAUS Message Header

The top level element of a JAUS-XML document provides a wrapper for a series

of messages. The reader constructs the list according to the content of the binary data

147

source from which it is reading (input stream, file, etc.) and all readable messages are

encoded into a single JAUS-XML document. Similarly, the serializer writes out the

contents of the message list in a single serialized stream regardless of whether the list

consists of one or many messages. In this way, the list structure of the JAUS-XML

document can be used to encode a single JAUS message or a series of JAUS messages.

3. Conversion of JAUS-XML to AVCL

As mentioned previously, an XSLT stylesheet is used to convert XML-encoded

JAUS messages to AVCL. In this regard there is little difference between this

transformation and the conversion of AVCL task-level behavior scripts to text-based data

formats beyond the observation that the product of the JAUS-to-AVCL translation is

XML vice free text. There are, however, two potential interpretations of a series of JAUS

commands. The most obvious interpretation is to treat the JAUS message sequence

literally (i.e., as a series of messages that are to be transmitted or received exactly as they

are encoded). On the other hand, JAUS messages are the command mechanism of a

JAUS system, so it is reasonable for a vehicle receiving a JAUS message to interpret it as

an imperative instruction. Depending on the vehicle involved, it may be more

appropriate to remove the message-specific constructs during translation and simply treat

a message sequence as a series of commands (i.e., as a task-level script). Since both of

these scenarios are feasible, stylesheets supporting both approaches were developed.

As indicated by Figure 5.28, the most notable differences between the two JAUS-

to-AVCL stylesheets are the root tag of the generated document (AVCLMessageList or

AVCL) and the mapping of the JAUS-XML header. When generating an AVCL

message list, JAUS-XML header information is used to generate the AVCL message

header, whereas it is included in an AVCL task-level behavior script using

MetaCommand behaviors. Both stylesheets map the message data section of Command

Class JAUS-XML messages to AVCL task-level behaviors. However, the two mappings

each treat the generated task-level behavior differently. When mapped to an AVCL

message list, the generated task-level behaviors comprise the body of a message in the

list. When mapped to a task-level behavior script they are inserted directly into the

script. Query and Inform Class messages are translated to equivalent AVCL messages in

the AVCL message list, but they do not map to AVCL task-level behaviors so they are

148

effectively ignored by the script-generating stylesheet (a warning message is generated

and a MetaCommand is inserted into the script).

Figure 5.28. Mapping of a JAUS-XML Message List to an AVCL Message List or

Task-Level Behavior Script

Of the 22 JAUS messages available in the JAUS-XML schema, 20 can be

atomically represented using a single AVCL construct. These are listed in Table 4.11

along with the AVCL construct to which they are mapped. In the case of Command

Class messages, the corresponding AVCL construct is a task-level behavior (possibly

embedded into the body of an AVCL message). When an AVCL message list is the

desired transformation product, Query Class messages are transformed into AVCL

InformationRequest messages. Inform Class messages to be included in an AVCL

149

message list, on the other hand, are transformed into VehicleState, VehicleCharacteristics

or empty messages depending on the type of information being transmitted. If the JAUS

message sequence is being used as the basis of an AVCL task-level behavior script, the

presence of a Query or Inform Class message is indicated by a MetaCommand behavior,

but the content of the JAUS message is not incorporated into the task-level script.

Message Type AVCL Construct Notes
Query Heartbeat
Pulse

InformationRequest
message Information type attribute set to "ping.”

Query Global Pose InformationRequest
message Information type attribute set to "posture.”

Query Global Vector InformationRequest
message Information type attribute set to "posture.”

Query Platform
Specifications

InformationRequest
message

Information type attribute set to
"vehicleCharacteristics.”

Query Time InformationRequest
message Information type attribute set to "vehicleTime.”

Query Travel Speed InformationRequest
message Information type attribute set to "velocity.”

Query Velocity State InformationRequest
Message Information type attribute set to "velocity.”

Query Wrench Effort InformationRequest
message

Information type attribute set to
"controlSettings.”

Report Heartbeat
Pulse Empty message None

Report Global Pose VehicleState
message

VehicleState element contains
GeographaphicPosition, VerticalPosition and
Orientation elements.

Report Global Vector VehicleState
message

VehicleState element contains vehicle telemetry
element.

Report Platform
Specifications

VehicleCharacteristics
message None

Report Time VehicleState
message

VehicleState element contains a timestamp
only.

Report Travel Speed VehicleState
message

VehicleState element contains a
BodyCoordinateVelocity element.

Report Velocity State VehicleState
message

VehicleState element contains a
BodyCoordinateVelocity element.

Report Wrench Effort VehicleState
message

VehicleState element contains a vehicle control
setting element.

Set Global Waypoint Waypoint behavior None
Set Time SetTime behavior None
Set Travel Speed MakeSpeed behavior None
Shutdown Quit behavior None

Table 5.10. JAUS Message Types that can be Mapped to a Single AVCL Construct

150

The remaining JAUS message types (Set Global Vector and Set Wrench Effort

messages) are transformed into AVCL task-level behaviors as depicted in Figures 5.29

and 5.30. The behavior sequence generated for these message types depends on the

message content and the target vehicle type (specified as a parameter to the XSLT

stylesheet). The elevation element of the Set Global Vector message, for instance, can be

used to generate a UAV MakeAltitudeMSL behavior or a UUV MakeDepth behavior. If

the generated script is intended for a UGV or USV, the elevation element is ignored.

Figure 5.29. Data Mapping from a JAUS Set Global Vector Message to AVCL Task-

Level Behaviors

As with other mappings from vehicle-specific data formats to AVCL, JAUS

messages often contain a number of optional values. Indicated by a dashed border in

Figures 5.29 and 5.30 (a number of examples are also present in the JAUS message types

of Table 5.10), the presence of these fields are a prerequisite to the generation of their

corresponding AVCL constructs. Also present in a number of JAUS messages are data

fields whose values are not carried over to the AVCL constructs during translation (e.g.,

the Roll and Pitch fields of the JAUS Set Global Vector message of Figure 5.29).

MetaCommand behaviors can be used to indicate the presence and values of these data

fields if desired, however the common use of these data fields when using JAUS with the

envisioned vehicles seems unlikely. For example, the ability of any autonomous vehicle,

regardless of type, to maintain a commanded roll or pitch is doubtful, and only UGVs

possess the ability to apply the resistive effort (braking) potentially ordered by a Set

151

Wrench Effort message to any great degree. For this reason most of these data fields are

ignored in the JAUS-to-AVCL stylesheets developed for this research.

Figure 5.30. Data Mapping from a JAUS Set Wrench Effort Message to AVCL

Task-Level Behaviors

4. Conversion of AVCL to JAUS-XML to AVCL

Translation of AVCL task-level behavior scripts, message lists and individual

messages to JAUS-XML is also accomplished with an XSLT stylesheet. Regardless of

the AVCL document being translated, the result of stylesheet application is a sequence of

JAUS-XML messages. Translation of individual AVCL messages and message lists is

152

slightly less complicated than translation of task-level behavior scripts because the

individual messages contain sufficient information to generate the JAUS message header.

Translation of task-level behavior scripts, on the other hand, requires specification of the

message source and destination, acknowledgement requirements, and priority using

parameters to the stylesheet or MetaCommand behaviors embedded within the script.

Beyond this, translation of all valid AVCL constructs to JAUS-XML is identical.

AVCL information-request and information-reporting messages are converted to

JAUS messages as indicated in Tables 5.11 and 5.12 with each AVCL message being

translated to a single JAUS message. Not surprisingly, AVCL messages that are used to

request information correlate to JAUS Query Class messages, and messages that are used

to report information correlate to Inform Class messages. Translation of AVCL task-

level behaviors (and messages with task-level behavior content) is only slightly more

involved. As shown in Table 5.13 most task-level behaviors are mapped to a single

JAUS message and even the Loiter and Waypoint behaviors are frequently translated to a

single message. A Set Travel Speed or Set Wrench Effort message is placed prior to the

Set Global Waypoint message if a behavior specifies the transit speed or power

respectively.

Information Request Content JAUS Message
Ping Query Heartbeat Pulse
Vehicle Characteristics Query Platform Specifications
Vehicle Time Query Time
Control Settings Query Wrench Effort
Posture Query Global Pose
Velocity Query Velocity State

Table 5.11. Translation of AVCL Information Request Messages to JAUS Messages

Information Report Content JAUS Message
Vehicle Characteristics Report Platform Specifications
Vehicle State (body velocity) Report Velocity State
Vehicle State (control order) Report Wrench Effort
Vehicle State (posture) Report Global Pose
Vehicle State (time stamp only) Report Time

Table 5.12. Translation of AVCL Information Reporting Messages to JAUS Messages

153

Examination of Table 5.13 reveals a number of imperfect mappings. This is not

unique to this particular translation and is conceptually not dissimilar to AVCL behaviors

that do not translate at all to a particular vehicle-specific language (e.g., the AVCL

TakeStation behavior does not correlate to a JAUS message). The fact of the matter is

that regardless of target vehicle there may be AVCL behaviors that are beyond the

vehicle’s capabilities. There are typically other task-level behaviors that are within the

target vehicle’s physical capabilities but whose semantics cannot be fully captured by a

vehicle-specific data format. Hover and Loiter behaviors fall into this category when

being translated to JAUS messages because they require specific vehicle action upon

waypoint arrival, but the JAUS Reference Architecture does not specify what a vehicle is

to do upon reaching a waypoint (JAUS, 04-4).

Task-Level
Behavior

JAUS Messages

Notes

Hover Set Global Waypoint UUV only. Hover behavior upon arrival not
guaranteed.

Loiter
Set Travel Speed (optional)
Set Wrench Effort (optional)
Set Global Waypoint

Loiter behavior upon arrival not guaranteed.
Set travel speed used if transit speed
specified.
Set wrench effort (propulsive linear X field)
used if transit speed specified.

MakeAltitudeMSL Set Global Vector UAV only. Sets the elevation field.
MakeClimbRate Set Wrench Effort UAV only. Sets the propulsive linear Z field.
MakeDepth Set Global Vector UUV only. Sets the elevation field.
MakeHeading Set Global Vector Sets the heading field.
MakeKnots Set Travel Speed None
MakeSpeed Set Travel Speed None
MakeTurnRate Set Wrench Effort UAV only. Sets propulsive rotational Z field.
MoveLateral Set Wrench Effort UUV only. Sets propulsive linear Y field
MoveRotate Set Wrench Effort UUV only. Sets propulsive rotational Z field.
Quit Shutdown None
SetAileron Set Wrench Effort UAV only. Sets propulsive rotational X field.
SetElevator Set Wrench Effort UAV only. Sets propulsive rotational Y field.
SetPlanes Set Wrench Effort UUV only. Sets propulsive rotational Y field.
SetPower Set Wrench Effort Sets the propulsive linear X field.

SetRudder Set Wrench Effort UUV, USV, and UAV only. Sets propulsive
rotational Z field.

SetThruster Set Wrench Effort UUV only. May set propulsive linear Y field
OR the propulsive linear Z field.

Waypoint
Set Travel Speed (optional)
Set Wrench Effort (optional)
Set Global Waypoint

Set travel speed used if transit power
specified.
Set wrench effort (propulsive linear X field)
used if transit speed specified.

Table 5.13. Translation of AVCL Task-Level Behaviors to JAUS Messages

154

As discussed earlier in this chapter, the stylesheet used for translation of AVCL to

any vehicle-specific format can handle task-level behaviors that do not map perfectly to

vehicle-specific commands in one of two ways. If clearly incompatible with the vehicle-

specific format, the stylesheet needs to generate error messages or initiate recovery

procedures. Alternatively, the task-level behavior can be converted to the best vehicle-

specific fit as was done when converting the AVCL Hover and Loiter to JAUS messages.

The inability to ideally map all AVCL behaviors to a particular vehicle-specific format

does not indicate an inherent incompatibility, but must be dealt with during translation

nevertheless. The requirements of the particular situation will dictate whether a mapping

from a particular behavior to the target data format is reasonable or not.

E. SUMMARY
Two important requirements for the use of a common autonomous vehicle data

model to support arbitrary vehicles is the ability to translate data-model-compliant data to

formats suitable for specific vehicles, and conversely to convert vehicle-specific data to a

data-model-compliant form. Further, the processes involved in these translations must be

general enough to apply to arbitrary vehicle formats. This capability is demonstrated

through the automated translation of AVCL to and from four text-based vehicle-specific

data formats and one binary format.

Generation of arbitrary text formats from AVCL is accomplished using XSLT

stylesheets. Semantic and syntactic differences between AVCL and various vehicle-

specific formats are handled by implementing a novel design pattern to obtain the

functionality of mutable variables within XSLT stylesheets, accessing external functions

through the use of XSLT extensions to implement functionality not normally available in

XSLT, and the inclusion of MetaCommand behaviors in AVCL task-level behavior

scripts to capture information that is truly vehicle-specific.

The more difficult problem of translating text-based data formats from arbitrary

vehicles to AVCL is accomplished through the use of context-free grammars, the Cocke-

Younger-Kasami parsing algorithm, and depth-first traversal and translation of a context-

free-grammar-based parse tree. Analogous to the use of XML Schema to define the

content and structure of an XML document and XSLT to transform documents to other

text-based formats, a context-free grammar constrains the content and structure of valid

155

non-XML text documents, while the Cocke-Younger-Kasami algorithm and depth-first

translation transforms compliant native-vehicle documents to another text-based format,.

Translation of binary data formats along the lines of JAUS messages are

translated to and from AVCL using an intermediate XML encoding of the binary data. A

binary data instance is converted to AVCL by implementing a data-format-specific

binary reader that loads binary instances into data-bound programming objects

conforming with the XML encoding. The data-bound object is marshaled through an

XSLT stylesheet designed to convert the XML encoding to AVCL. Similarly, an XSLT

stylesheet can be applied to an AVCL document to transform it into an XML encoding of

the target binary format. The actual binary form is generated by unmarshalling the XML

document into a data-bound programming object that is serialized to the desired binary

format by a writer implemented for the purpose.

The successful implementation of the translations discussed in this chapter

demonstrates how an XML-based common autonomous vehicle data format can be used

as a bridge between arbitrary vehicle-specific formats. Whether text-based or binary,

instances of any vehicle-specific format can be converted to common-data-model-

compliant XML. Similarly, common-data-model-compliant data can be converted to

arbitrary text-based or binary vehicle-specific formats. In effect this means that data in

any vehicle-specific format can be converted to any other vehicle-specific format by

using the common data model as an intermediate form—one of the primary objectives of

this research.

156

THIS PAGE INTENTIONALLY LEFT BLANK

157

VI. OFF-VEHICLE DECLARATIVE MISSION APPLICATION

A. INTRODUCTION
One aspect of the translation forms discussed in Chapter V is that they apparently

deal solely with the task-level behavior and messaging portions of the AVCL schema. In

theory the translations discussed in Chapter V can be applied to declarative missions as

well, but the fact of the matter is that the current generation of autonomous vehicles rely

almost exclusively on a level of control that maps more naturally to the AVCL task-level

behavior set. This state of affairs might call into question the usefulness of a more

abstract declarative mechanism such as the one developed in this work for defining

autonomous vehicle tasking.

This chapter begins to address the issue of declarative mission use by

demonstrating how declarative autonomous vehicle mission specification can be used in

conjunction with task-level behavior scripts during the pre-mission phase of an operation.

Specific topics include the generation of task-level behavior scripts from declarative

missions and the inference of appropriate declarative agendas from unannotated task-

level behavior scripts.

B. GENERATION OF TASK-LEVEL BEHAVIOR SCRIPTS FROM
DECLARATIVE SPECIFICATIONS

1. Overview
The first application of the declarative missions is their pre-mission use as the

basis for task-level behavior scripts that are subsequently to be used for vehicle tasking.

In many instances, it might be preferable to generate a task-level behavior script from a

declarative AVCL agenda rather than to develop it manually because of the relative

simplicity of the declarative tasking, since it is often more intuitive to describe what a

mission is intended to accomplish than to define the precise detailed steps describing how

to proceed. It is more straightforward, for instance, to simply direct a vehicle to search

an area than to define a long series of waypoints that provide the appropriate coverage. A

number of mechanisms are potentially applicable, including traditional artificial

intelligence search and planning algorithms as well as heuristic application of predefined

or parametrically-derived behavior sequences. Before covering the actual mechanisms

158

used to convert declarative agendas to task-level behavior scripts, however, a number of

issues particular to the pre-mission script generation bear discussion.

Most obviously, the success or failure of the individual goals of a declarative

mission is not known in advance, so the state transitions that are required over the course

of the mission are not known. In short, although it is possible to convert individual goals

into suitable task-level behavior scripts, it is not possible to definitively determine how to

appropriately order the scripts. If, however, the assumption is made that all goals will

succeed, a script representing a best-case mission progression can be generated. The

script-generation methodologies discussed in the remainder of this section are based on

this assumption. However, this assumption applies only to pre-mission script generation

and not to the in-mission planning and replanning discussed in Chapter VII.

A closely related issue concerning pre-mission conversion of declarative agendas

to task-level behavior scripts (and groups of sub-scripts) arises from the static nature of

scripts. As with the sequencing of sub-scripts corresponding to individual goals in an

agenda finite state machine, the makeup of the sub-scripts themselves is fixed once

generated. While this is typically true of the scripts (i.e., they do not change once the

vehicle begins the mission), it does make effective pre-mission use of some goal-types

more difficult. AVCL goal types such as Attack, Demolish and MarkTarget, for instance,

require the vehicle to locate a target before performing the specified action, but the

precise position in the script at which the target will be located is not known when the

script is generated in advance. A more subtle aspect of the static nature of scripts is that

it may not be possible to determine when a goal has completed. An area search for a

single target, for instance, is theoretically successful when the target is located. The

search script, however, provides for coverage of the entire area even if the target is

promptly encountered on the first leg of the search. It must be emphasized, however, that

this problem is not unique to scripts generated from declarative agendas since it will also

prove to be the case for manually generated area search scripts. As with goal ordering,

these potential behavior script ordering issues apply only to pre-mission script generation.

A more insidious problem inherent in the use of AVCL agendas is that some

information contained in the goals cannot be expressed accurately using task-level

159

behaviors. In fact, some goal types implicitly require activities that cannot be

commanded using the existing task-level behavior set (e.g., there is no task-level

behavior available to command the vehicle to decontaminate an area). This is

particularly true of goal types that require situational use of mission-specific systems.

Some current and developmental autonomous vehicles provide for limited control of

mission systems, but the diversity of potential onboard systems and the lack of a mission

payload standard make mission-system control using a generalized command set

problematic. From a control standpoint, many command languages implicitly assume

that the vehicle “knows” its purpose and can manage its mission systems accordingly.

For instance, a REMUS UUV with an onboard Computer-Aided Detection / Computer-

Aided Classification system will always look for and classify submerged mine-like

objects, so there is no need to incorporate this sensor tasking into the mission definition

(although REMUS objectives do provide some control over the sidescan sonar settings).

A number of current research efforts may provide the promise of standardized

mission system interface. Examples include JAUS (the Manipulator and Environment

Sensor subgroups of the Command, Query and Inform Message Classes), the Open

Geospatial Consortium’s Sensor Model Language (OGC, 06) and ASTM International’s

Standard Guide for Unmanned Undersea Vehicle Mission Payload Interface (ASTM, 06).

The further development of these standards will likely make it possible to more

effectively incorporate mission-system management into the autonomous vehicle control

architecture, thereby making more robust execution of many goal-types possible. Until

then, the functionality required to fully execute many missions defined as declarative

agendas in different robot architectures will remain elusive.

In the near term, there is no good workaround that provides for the control of

mission-specific systems using the vehicle’s command script—even if incorporated into

the AVCL task-level behavior set, mission-specific behaviors are unlikely to translate to

vehicle-specific commands. Similar to their use in the translations of Chapter V,

MetaCommand behaviors are used by the planners discussed in this and the next chapter

to indicate mission-system control requirements. To the extent that the command

language of the target vehicle provides for mission-system control, these MetaCommand

behaviors can be converted to vehicle-specific commands. If the mission requirements

160

are beyond the capabilities of the target vehicle, the presence of the MetaCommand

behavior can be used to generate a warning or error. In all other cases, it is simply

assumed that vehicle’s mission systems are operated correctly by default.

Notwithstanding the aforementioned issues, it is possible to convert most AVCL

agendas into task-level behavior scripts closely resembling those that might be manually

developed to accomplish the same goals. It is helpful to the pre-mission script-generation

process to assume that individual goals always succeed, that sub-scripts run from start to

finish uninterrupted, and that mission-specific systems aboard the target vehicle operate

in a manner consistent with the goals without being explicitly ordered to do so.

Accordingly, the methods discussed in the remainder of this section make use of AVCL

MetaCommand behaviors to embed goal-specific information in the script when

appropriate. For example, the script generated to accomplish a Search goal includes a

waypoint pattern over the area that provides the requisite probability of detection. The

entire script executes from start to finish uninterrupted after which the script

corresponding to the next goal can begin. Finally, the script includes MetaCommand

behaviors describing the objectives of the search, but it is assumed that the autonomous

vehicle will use its sensors and mission systems to locate the correct targets regardless.

2. Decision-Tree-Based Generation of Task-Level Behavior Scripts
The process by which autonomous vehicle missions are manually developed is

not significantly different than the process by which manned or remotely operated vehicle

missions are planned. The process typically begins with a formal or informal analysis of

the mission’s objectives, the capabilities of the vehicle, and the characteristics of the

operating area, then ends with the development of a suitable mission script. Utilizing the

same information that a human operator might use in designing a mission, this process

can be automated for the goal-types available in AVCL. Complete planning for the

accomplishment of a specific goal can be divided into two steps: planning the transit to

the operating area and planning the in-area activities to successfully accomplish the goal.

The remainder of this section covers goal-specific, in-area planning and requirements for

global path-planning between operating areas is discussed later in this chapter.

A straightforward mission-planning methodology that can be applied to the

autonomous vehicle domain relies on a set of Boolean propositions describing

161

characteristics of the operating area and goal. Inference rules implemented as a decision

tree are then used to correlate the propositions to a behavior-sequence template

appropriate to the circumstances. When the template is applied, vehicle and area

characteristics are incorporated to generate a specific sequence of task-level behaviors

that can be executed to accomplish the goal.

As an example, consider the AVCL goal of Figure 6.1 calling for the search of a

rectangular area. The inference rules corresponding to an area search goal with a

rectangular (but not square) operating area are able to determine a suitable search pattern

that can provide the requisite coverage, consisting of a series of parallel lines that

progress from one side of the operating area to the other as depicted in Figure 6.2. This

pattern is formally referred to as a parallel-track pattern in the International Aeronautical

and Maritime Search and Rescue Manual (IMO and ICAO, 98). The parallel-track

template generates the specific waypoint series based on area length, width and

orientation and vehicle sensor sweep width—defined in the Navy Search and Rescue

Tactical Information Document as the distance “obtained by reducing the maximum

detection distance…so that scattered targets which may be detected beyond the limits are

equal in number to those which may be missed within those limits” (CNO, 97).

Figure 6.1. An AVCL Goal Calling for the Search of a Rectangular Area with a

Required Probability of Detection of 0.8

<Goal id="Goal1">
 <Search datumType="area" requiredPD="0.8"/>
 <OperatingArea>
 <Rectangle>
 <NorthwestCorner>
 <XYPosition x="75000" y="-27500"/>
 </NorthwestCorner>
 <Width value="25000"/>
 <Height value="75000"/>
 <Orientation value="30"/>
 </Rectangle>
 </OperatingArea>
 <Timing start="1800" stop="5400"/>
</Goal>

162

Figure 6.2. A Parallel-Track Search Pattern that can be Executed by a UAV to

Accomplish the AVCL Goal Specified in Figure 6.1

For a number of goal types, the term “decision tree” is a bit misleading since only

one template (i.e., one general method of accomplishing the goal) was developed during

this work. A single template obviously simplifies the task-level behavior sequence

generation in that it does not require the use of propositions or inference rules, although

vehicle, area and goal characteristics are still used to generate specific task-level behavior

sequences. Goals that require the vehicle to jam or monitor electronics transmissions,

illuminate an area or relocate to another geographic position all fall into this category.

MonitorTransmissions, IlluminateArea and Jam goals, for instance, are accomplished

simply by transiting to the center of the designated operating area and turning on the

appropriate sensor, illuminator or jammer. MetaCommand behaviors are used to indicate

163

sensor, illuminator or jammer on and off times. Reposition goals, on the other hand

require no goal-specific planning whatsoever since they are considered successful when

the vehicle completes the transit to the new operating area. From a pre-mission

standpoint, planning for Rendezvous goals is the same as for Reposition goals (with the

addition of MetaCommand behaviors identifying the rendezvous target) since the actual

location of the rendezvous target within the operating area is not known ahead of time.

Planning for the remaining goal types is somewhat more complicated since there

are a number of potential ways that each can be accomplished. However, they do share

one significant aspect that greatly simplifies the overall process. Inherent in the

accomplishment of each of these goal types is the requirement to search (or methodically

cover) the operating area. For instance a patrol goal uses a repeating coverage pattern of

the operating area, and a SampleEnvironment goal is accomplished by sweeping the area

while the environmental sensors accumulate data. Impracticality of pre-mission script

generation notwithstanding, even Attack, Demolish and Decontaminate goals require a

search for the target or contaminant. For the purpose of pre-mission script generation,

therefore, scripts for the accomplishment of these goal types can be generated by tailoring

a search decision tree depicted in Figure 6.3 to match specific goal requirements.

In addition to the parallel-track pattern, the International Aeronautical and

Maritime Search and Rescue Manual defines a number of patterns that might be utilized

by autonomous vehicles to provide search coverage for a prescribed area. The search

patterns described in Figure 6.4, either defined in or adapted from the International

Aeronautical and Maritime Search and Rescue Manual, form the basis of the search

pattern templates of the search planning decision tree of Figure 6.3.

The first branch of the decision tree is determined by the focus of the search,

specifically, whether the search is to focus on a single point (the centroid of the area) or

provide for equal coverage of the entire area. The AVCL Search goal explicitly specifies

this value using the datumType attribute (which can have a value of either “point” or

“area”). Searches corresponding to all other AVCL goal types provide for coverage of

the entire area. Propositions used in the remainder of the decision tree are based on the

characteristics of the area to be searched and the sweep width of the vehicle sensor.

164

Figure 6.3. A Decision Tree for Determining an Appropriate Search Pattern Based on

the Characteristics of the Vehicle, Operating Area, and Search Type

Figure 6.4. Preplanned Search Patterns Available for use in Accomplishing AVCL Goals

(After: IMO and ICAO, 98)

Parallel-track pattern: a sequential series of equally spaced
parallel tracks. This pattern is useful in providing for uniform
coverage of a large area when the search target can be located
anywhere in the area with equal probability.

Expanding-square pattern: a pattern starting at the center of a
square area and expanding outward through a series of 90 degree
turns and increasingly long legs. This pattern provides uniform
coverage of the search area and is useful when the search area is
potentially large, but the search target is most likely located near
the center of the area.

Sector pattern: a pattern starting at the center of a circular area
and dividing the area into pie-shaped wedges using a series of
outbound and inbound legs. This pattern provides repeated coverage
of the center of the area with less coverage at the edges and is
useful for thorough coverage of small areas when the search target
is most likely located near the center.

Expanding-rectangle pattern: similar to an expanding-square
pattern, this pattern expands at different rates as proscribed by
the length to width ratio of the rectangle. This pattern provides
thorough (but slightly uneven) coverage of a rectangular area. It
is useful in the search of potentially large areas when the search
target is most likely located near the center of the area.

Shrinking-square pattern: starts at the outer edge of the area and
proceeds towards the center through a series of 90 degree turns and
increasingly short legs (essentially the reverse of an expanding-
square pattern). This pattern provides uniform coverage of the area
and can be used when the search target can be located anywhere in
the area with equal probability or if it is most likely located away
from the center of the area.

165

For point-focus searches, the next proposition in the tree is dependent on the

radius of the area’s bounding circle relative to the track spacing (computed using

Equation 6.1) of the search pattern. If the bounding circle radius is less than twice the

track spacing, then a sector pattern can be used to provide an efficient and highly focused

search. For larger areas that are roughly circular (specified as a circle or the search area

to bounding circle area ratio is greater than 0.7), an expanding-square pattern with the

first leg aligned with the vehicle’s inbound heading is used. If the area is roughly square

(oriented bounding box length to width ratio greater than 0.8 and area-to-oriented-

bounding-box area ratio greater than 0.7) then an oriented-bounding-box-aligned

expanding-square pattern is used. Finally, if the area is rectangular, but not square (area

to oriented bounding box area ratio greater than 0.7) then an oriented-bounding-box-

aligned expanding-rectangle pattern is used. If none of these proposition values is true,

none of the predefined patterns applies. The method for generating search patterns for

these areas is discussed in the next section.

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= W

P
WS

D

4 (Eq. 6.1)

The decision process for area searches is significantly simpler. If the area is

roughly square or roughly circular, then an oriented-bounding-box-aligned shrinking-

square pattern is used. If it is roughly rectangular but not square, a parallel-track pattern

is used. If the area is irregularly shaped, then none of the predefined patterns is

applicable, so the planning techniques discussed in the next section are used instead.

Once the type of pattern to be utilized has been determined, the actual waypoints

can be generated without difficulty. The required probability of detection and the

vehicle’s sensor sweep width (W) are used to determine the search pattern track spacing

(S) using Equation 6.1. Based on the tables in (CNO, 97), Equation 6.1 indicates that a

single-search probability of detection of 0.8 calls for a track spacing equal to the sweep

width. The track spacing and the oriented-bounding-box of the operating area are used to

determine the number of search legs are required by the pattern. The final step in

waypoint generation is to clip out-of-area legs to keep the vehicle within the boundaries

of the operating area. The result of out-of-area clipping is a pattern along the lines of the

166

rounded-corner-out expanding-square pattern depicted in Figure 6.5 corresponding to a

point-focused search of a circular operating area.

Figure 6.5. An Expanding-Square Search Pattern for use by a USV in Accomplishing a

Point-Focused Search of a Circular Operating Area

3. Use of Planner-Generated Search Pattern Scripts

a. Overview
As the decision tree of Figure 6.3 indicates, there are situations to which

none of the search patterns discussed in the preceding section can be easily applied.

These cases typically involve operating areas consisting of irregularly shaped (most

frequently concave) polygons along the lines of the area depicted in Figure 6.6 that are

not conducive to the uniform and repeating nature of predefined search patterns.

167

A number of options are potentially available to address this issue.

Among the most obvious is to generate a predefined search pattern to fit the operating

area’s oriented bounding box and clip the search legs that cross the area boundaries. This

approach is, in fact, how patterns are generated for operating areas that are only “slightly”

irregular when the decision tree of Figure 6.3 is used. For more irregular areas, however,

these patterns can be inefficient since they often repeatedly transit some parts of the area

in order to provide coverage for more remote sections. Further, when the operating area

is concave, it is possible for search legs to begin and end within the area but go outside

the area during transit, increasing the complexity of segment clipping and further

decreasing the efficiency of the final search pattern. Both of these phenomena are

illustrated in Figure 6.6, particularly in the eastern portion of the area where the edge is

transited multiple times to ensure coverage of the northeastern and southeastern corners.

Figure 6.6. An Irregularly Shaped Operating Area and Overlaid Parallel-Track Search

Pattern that has been Adjusted to Avoid Out-Of-Area Excursions

168

Another potential approach might be to implement additional predefined

patterns to more naturally fit more complex shapes. Ultimately, however, this amounts to

a workaround that might mitigate the difficulty of fitting predefined search patterns to

arbitrary polygonal operating areas, but does not eliminate it. Increasing the number of

available patterns and increasing the complexity of the decision tree may be enable the

application of further predefined patterns to more complex areas, however areas for

which no predefined pattern is ideal may still be encountered on occasion.

A more flexible and universally applicable solution is to incorporate a

methodology for planning a search pattern specific to the operating area into the decision

tree as depicted in Figure 6.7. The planner must quickly generate a sequence of

waypoints that provide effective coverage (i.e., commensurate with the required

probability of detection) of areas for which preplanned patterns are not well-suited.

Numerous artificial intelligence planning and search methods might be applied and upon

inspection, the AVCL task-level behavior set appears suitable for this purpose. The

waypoint behavior in particular has inherent postconditions (i.e., the vehicle is at a new

position and area around the path is searched) that can be used to define a search graph.

Figure 6.7. A Decision Tree for Determining an Appropriate Area-Search Pattern that

Relies on Artificial-Intelligence Planners for Irregularly Shaped Areas

A number of planning and search methods including GraphPlan, breadth-

first search, branch-and-bound search, A* and hill-climbing search were considered. Of

these, search-graph depth and high branching factors ruled out the uninformed search

algorithms (i.e., those that consider all transitions equal and do not order state evaluation

169

based on their relationships to the goal) such as GraphPlan and breadth-first search. A

pure branch-and-bound approach proved impractical for similar reasons, as did many A*

implementations. Ultimately, potentially acceptable performance was obtained using two

A* search implementations, a hill-climbing search, and a heuristic approximation of the

Traveling Salesman Problem. Further analysis follows.

b. A-Star (A*) Based Search-Pattern Development

The underlying structure of all three search-based candidate algorithms is

identical. The search area is covered with a hexagonal grid centered at the area’s centroid

with the diameter of each hexagon set to 0.75 times the computed track spacing (S). A

search-graph state is defined by the position of the last waypoint in the candidate search

pattern, the heading (ψ) of the vehicle upon reaching the location, and the list of

hexagons that have been visited by the partial pattern. A hexagon is considered visited if

the pattern’s track passes within S/2 meters of the hexagon’s center. Potential successor

states consist of all states that correspond to a vehicle transit from its current position to

the center of a hexagon that has not yet been visited. The set of goal states consists of all

states with no unvisited hexagons. The search pattern, therefore, consists of the sequence

of vehicle positions in the state sequence from the start to the goal.

The basic A* search relies on two metrics: the actual cost of a partial path

to a state, and the estimated remaining cost from that state to the goal. The partial path

cost is computed simply as the sum of the cost of individual steps. For this A*

implementation, the step cost for a transition from state Xi to state Xj is defined by

Equation 6.2 where distance(Xi,Xj) is the Euclidean distance between the locations

corresponding to Xi and Xj, and ψ∆ is the magnitude of the turn required at the beginning

of the transit. The justification for the distance portion of the cost is fairly obvious, while

the turn element of the equation biases the search to favor straighter paths. The estimated

remaining cost function is defined by Equation 6.3 where k is a constant and hexagon(X)

is the number of hexagons visited as of state X. The constant, k, is used to bias the search

in favor of a particular type of solution. Lower values for k favor low-cost solutions at

the expense of increased search time (setting k to 0 results in a pure best-first search)

while higher values bias the search towards solutions that require fewer steps. The A*

implementation tested here uses a k of 5.0 and heavily biases the search towards patterns

170

that visit the most hexagons with the fewest number of waypoints, resulting in solutions

similar to the pattern depicted in Figure 6.8.

 () ()
10

,,
S

XXistancedXXC jiji

ψ∆
+= (Eq. 6.2)

 () () ()()iGoali XhexagonXhexagonkSXE −= (Eq. 6.3)

Figure 6.8. A Search Pattern for an Irregularly Shaped Operating Area Generated by

an A-Star (A*) Search Biased Towards Patterns with Fewer Waypoints

Search patterns generated with this A* search tend to consist of legs that

transit from one side of the area to the other in a rather disorganized manner.

Additionally, they often repeatedly cover portions of the area as they traverse from side

to side. This is counter to the implicit goal of generating a pattern that is more efficient

171

(i.e., shorter in length) than an adjusted predefined pattern. Rather, A*-generated plans

are typically much longer than adjusted parallel-track patterns, and are only occasionally

more efficient than adjusted square or rectangle patterns. Unfortunately, significant

reduction in the value of k to favor more efficient search patterns quickly increases

search-tree depth to an unacceptable degree.

c. Combined Best-First / A* Based Search-Pattern Development

In an attempt to overcome the shortcomings of this A* implementation, a

modification to the basic A* algorithm is introduced. If the value of k is lowered (to 0.25

in this case), the cost of the partial path becomes more important than the estimated

remaining cost when evaluating partial solutions. Thus, shorter partial patterns that make

some progress towards the goal are favored over longer ones that make more progress. In

order to minimize the time spent evaluating dead-ends, the A* agenda is pruned

periodically using a best-first heuristic. After evaluating a predetermined number of

candidates (five in the tested implementation), the search commits to the most promising

partial plan and deletes all other candidates from the agenda. The A* search is restarted

using the most promising partial plan as the start state. This process repeats until the goal

is reached.

An important restriction during this search is that the ability to backtrack

is limited. It is therefore crucial that the goal remain reachable from any state to ensure

the discovery of a solution. The search graphs described here meet this requirement.

Since the heuristic for determining potential successor states allows the partial pattern to

be extended to any unvisited hexagon, it is evident that all hexagons in the search grid

either have been or can be visited from any state in the graph. However, generated

patterns may require clipping of legs that cross the concave portions of the polygon.

Search patterns generated by this combined best-first / A* algorithm, such

as the one depicted in Figure 6.9, tend to be more efficient than those generated by the

previously discussed A* search (a specific comparison of the various search-pattern

planners is provided later in this section). Based on numerous test cases, the average

total distance traveled in executing search plans generated by this algorithm are

approximately 13 percent shorter than those generated by the A* planner. Unfortunately,

these plans still are still less efficient than adjusted parallel-track patterns and only

172

improve on adjusted square patterns in six of ten test cases. Thus, they do not accomplish

the goal of generating area-specific search plans that improve upon area-adjusted

predefined patterns. Additionally, the average run time of the best-first / A* planner is

over six times longer than the run time of the A* planner. From an implementation

standpoint, however, this does not rule out the combined search. Since the search

commits to promising partial plans early in the search process, the total planner run time

is not as important as it is for planners that do not generate any usable results until they

have run to completion.

Figure 6.9. A Search Pattern for an Irregularly Shaped Operating Area Generated using

a Combined Best-First / A* Search

173

d. Use of Hill-Climbing Search for Area Search Pattern Generation

Despite the improved efficiency of search patterns generated by a

combined best-first / A* search, the example depicted in Figure 6.9 still leaves significant

room for improvement. The improvement over the previous algorithm does, however,

provide evidence that a pure best-first approach might provide still-better results.

Utilizing Equations 7 and 8 with k set to 0.25 to favor shorter-path solutions, a hill-

climbing search is easily implemented. An extension of the combined best-first / A*

search, a hill-climbing search is achieved by clearing the search agenda of all but the

most-promising partial plan at each iteration. As with the combined best-first / A*

search, the lack of backtracking necessitates that the goal state be reachable from any

state in the search graph.

In virtually every test case, the search pattern generated using this search

was shorter in length than the pattern generated using the A* or combined best-first / A*

search implementations (the average distance traveled by the test case patterns was 25

percent less than the A* average distance). Additionally, the average planner run times

were almost three times faster than those of the combined best-first / A* planner (but

almost twice as slow as the A* planner). Discouragingly, however, the efficiency of

plans generated using this algorithm still do not consistently beat that of adjusted parallel-

track patterns, averaging slightly longer patterns and actually improving on the adjusted

parallel-track length in only one of ten test cases. The pattern depicted in Figure 6.10

provides an example of why this shortfall occurs. This plan covers a number areas

multiple times, recrossing its own path on four occasions and passing within close

proximity to previous legs on two more. Nevertheless, these patterns are nearly always

shorter than adjusted expanding or shrinking-square patterns and frequently shorter than

adjusted parallel-track patterns. This improvement coupled with the relative speed of

planner execution make this hill-climbing implementation potentially useful.

174

Figure 6.10. A Search Pattern for an Irregularly Shaped Operating Area Generated using

a Hill-Climbing Search that does not Allow Backtracking

e. Search Pattern Development Using Iterative Improvement of a
Traveling Salesman Problem Solution

The most successful methods of planner-based search pattern generation

implemented in the course of this work treated the search as an adaptation of the traveling

salesman problem. Although known to be of nondeterministic-polynomial-time-hard

(NP-hard) complexity, it is possible to develop a “good” if not “optimal” solution much

more quickly (Corman, et al., 90). Similar to the search-based pattern planners, the

traveling-salesman-problem-based algorithm divides the search area into hexagons that

are to be visited but, unlike the previous methods, the center of each hexagon must

actually be used as a waypoint in the search pattern. This visitation criteria allows

increasing hexagon diameter to match track spacing without sacrificing coverage. When

175

the iterative improvement algorithm (described in pseudocode in Figure 6.11) begins, the

search points (i.e., the set of hexagon centers) are loaded into an array representing

visitation order. The only stipulation is that the first element must be the search starting

point (i.e., the area center for a point-focused search or the closest search point to the area

entry otherwise). Each array element (with the exception of the first) is iteratively

compared against other the elements. If the path defined by swapping the elements is

shorter than the current path, the elements are swapped. This process is repeated until no

further improvements are obtained.

Figure 6.11. Progressive Improvement of a Traveling Salesman Problem Solution to

Generate Efficient Search Patterns for Arbitrarily Shaped Areas

Search patterns generated using this algorithm are easily the most efficient

of all of the planner-generated patterns discussed thus far, averaging a 40 percent

improvement over patterns generated by the A* search for the test cases. As the example

of Figure 6.12 indicates, these patterns gravitated towards relatively regular patterns with

few intersections. Despite a slight susceptibility to convergence on local minima (a

common characteristic of iterative improvement algorithms), these patterns were also

shorter than the adjusted parallel track pattern in seven of ten test cases. Finally, the run

Let searchPts =
 array of search area grid hexagon centers
Let startD = 0
Let endD = pathDistance(searchPts)
While endD != startD
 For pt1Index = 1 to count(searchPts) – 1

 For pt2Index =
 pt1Index + 1 to count(searchPts)

 Let d1 = pathDistance(searchPts)
 swap(searchPts, pt1Index, pt2Index)
 Let d2 = pathDistance(searchPts)
 If d1 < d2
 swap(searchPts, pt1Index, pt2Index)
 startD = endD
 endD = min(d1, d2)

176

time of the traveling-salesman-problem-based planner was at least an order of magnitude

better than any of the previously discussed planners in all test cases.

Figure 6.12. A Search Pattern for an Irregularly Shaped Operating Area Generated using

the Traveling-Salesman-Problem-Based Algorithm of Figure 6.11

f. Iterative Improvement of Traveling Salesman Problem Search
Patterns using Simulated Annealing

One pitfall of the algorithm of Figure 6.11 is the tendency to converge on

local minima. In many instances, the initial traversal sequence contains loops and

patterns that cannot be untangled by pair-wise exchange based solely on the relative

quality of the pre- and post-switch patterns (the pattern depicted in Figure 6.12 contains

one such loop). For this reason, a number of traveling salesman problem approaches

incorporate random components that allows the search to explore the search space more

freely. Among these are genetic algorithms and simulated annealing (Russell and

Norvig, 03).

177

The algorithm of Figure 6.11 is easily augmented to incorporate simulated

annealing by modifying the conditions upon which points in the sequence are switched.

Equation 6.4 is used to determine a probability that two points i and j are switched even if

the resulting path (pnew) is longer than the original one (pold). The points are always

switched it the resultant path is shorter. The variables t and tmax are the current and

starting “temperatures” of the annealing system, respectively, and k is a weighting factor

applied to the difference in path lengths (the best results were obtained using a value of

30). Cooling in the implemented system is linear to a minimum of zero (at which point

the algorithm continues according to Figure 6.11). The equation makes seemingly less

than optimal switches more likely (to a maximum probability of 0.5) while the system is

still “warm” and if the switch results in a path that is only slightly longer than the original

path.

 () ()
,

max

1 min ,1.0
2

new old
i j

old

k p p tP switch
p t

⎛ ⎞⎛ ⎞− ⎛ ⎞
= ⎜ − ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 (Eq. 6.4)

Typical results of the simulated-annealing-based traveling salesman

problem algorithm described above are along the lines of the search pattern depicted in

Figure 6.13 which is substantially shorter than even the pattern generated by the previous

traveling salesman problem iterative improvement algorithm. However, the stochastic

nature of the selection makes results nondeterministic and similar performance is not

guaranteed. For this reason, simulated-annealing implementations often use multiple

searches to increase the likelihood of obtaining at least one near-optimal solution. This

approach might be applicable for the pre-mission search pattern generation described in

this chapter, but is probably impractical for on-vehicle control as described in Chapter

VII. The usefulness of a planner such as this one for actual vehicle control depends on

factors such as the likelihood of a suboptimal plan and the degree of potential

suboptimality. These and other characteristics of the simulated-annealing traveling

salesman problem iterative-improvement algorithm are discussed in the next section.

178

Figure 6.13. An Irregular Area Search Pattern Derived using Simulated-Annealing-Based

Iterative Improvement of a Traveling Salesman Problem Solution

g. Comparing Automated Search Pattern Generation Techniques
From the preceding discussion, it is clear that the traveling-salesman-

problem-based search pattern planners outperform the search-based planners in both the

efficiency of the generated search plans and the execution speed of the planners

themselves. Figures 6.14 through 6.16 provide a more detailed comparison of all five

planners. Because of its nondeterministic nature, the average, minimum, and maximum

values for 1000 runs of the simulated annealing planner are depicted. Where relevant, a

comparison against expanding-square and parallel-track patterns is provided as well.

Figures 6.14 and 6.15 provide a comparison of the search-pattern length

for both planner-generated and adjusted preplanned patterns for ten concave-polygonal

areas along the lines of the one depicted in the previous examples. Figure 6.14 depicts

absolute pattern length while Figure 6.15 depicts normalized length using the area-

179

adjusted parallel-track pattern as the baseline. These graphs quantify the previous

observations concerning the relative efficiency various planner-generated plans. The

traveling-salesman-problem-based planners are the only ones that produced better results

than the area-adjusted parallel-track pattern on a reasonably consistent basis. The

simulated annealing planner, in particular, performed well, providing the best solution in

eight of ten test cases. In fact, even the worst-case simulated-annealing results improved

upon the area-adjusted parallel track pattern in half of the test cases. The traveling-

salesman-problem-based and hill-climbing planners were all able to generate patterns of

shorter length than the area-adjusted expanding or shrinking-square or rectangle patterns.

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10 Avg
Search Area

Se
ar

ch
 P

la
n

Tr
ac

k
Le

ng
th

 (m
)

OBB-Aligned Expanding Square OBB-Aligned Parallel Track
Best Search Time A* Combined Best-First / A*
Hill Climbing TSP Iterative Improvement
TSP Simulated Annealing

Figure 6.14. A Comparison of Absolute Track Length of Planner-Generated and Area-
Adjusted Preplanned Search Patterns for Concave-Polygonal Areas

Figure 6.16 shows the planner run times in generating plans for the same

ten concave-polygonal areas. The run times of the combined best-first / A* planner are

significantly longer than the next slowest planner. Most striking, however, is the degree

to which traveling-salesman-problem-based planners outperform the search-based

planners. Ultimately this is not surprising since the computational complexity of Figure

6.11’s algorithm is ()mnO 2 where n is the number of search points and m is the number

of iterations that continue to show improvement. This is not insubstantial by any means,

but it is significantly less complex than the potential exponential complexity of the A*

180

search. Despite the fact that the combined best-first / A* and hill-climbing searches

significantly reduce complexity by eliminating most search-tree branches or minimizing

search-tree depth, Figure 6.16 provides an indication that their complexity as

implemented still exceeds that of a low-order polynomial algorithm by a great deal. The

increase in run time of the simulated annealing planner over that of the basic traveling-

salesman-problem-based planner results from the continuation of the algorithm until the

system temperature reaches zero

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

1 2 3 4 5 6 7 8 9 10 Avg
Search Area

Se
ar

ch
 P

la
n

Tr
ac

k
Le

ng
th

 to

O
B

B
-A

lig
ne

d
Pa

ra
lle

l T
ra

ck

Le
ng

th

OBB-Aligned Expanding Square OBB-Aligned Parallel Track
Best Search Time A* Combined Best-First / A*
Hill Climbing TSP Iterative Improvement
TSP Simulated Annealing

Figure 6.15. A Comparison of Normalized Track Length of Planner-Generated and Area-
Adjusted Preplanned Search Patterns for Concave-Polygonal Areas

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 Avg
Search Area

Pl
an

ne
r R

un
 T

im
e

(s
ec

s)

Best Search Time A* Combined Best-First / A* Hill Climbing
TSP Iterative Improvement TSP Simulated Annealing

Figure 6.16. Comparison of Run Times for Search Pattern Planners

181

The data depicted in Figures 6.14 through 6.16 provide evidence to

support the use of the traveling-salesman-problem-based planners for the generation of

search plans for irregularly shaped operating areas. Further, the observation that the

worst-case solutions generated through simulated annealing are both rare (i.e., the

average solution is significantly closer to the best-case solution than the worst-case one)

and on par with basic traveling salesman problem solutions indicates that the this planner

is suitable not only for pre-mission use, but for on-vehicle use as well.

It is worth noting that operating areas of this sort (i.e., irregular-polygonal

areas) are the exception rather than the rule. The majority of search areas can be

classified as circles, rectangles or concave polygons. For these area types, preplanned

patterns still provide the most intuitive and straightforward coverage.

4. Global Path Planning in Script Generation

Returning to the original motivations for this chapter, the second requirement for

converting a declarative agenda to a task-level behavior script is global path planning

between operating areas. For pre-mission planning purposes, this amounts to planning a

path from either the specified launch position (for the first goal in the mission) or the last

geographic position in the sub-script corresponding to a particular goal to the closest

point in operating area of the next goal to be attempted or to the recovery position if the

mission is complete.

Much recent research in the area of mobile robot path planning has focused on

searches along the lines of the D* search. This search algorithm is similar to the A*

algorithm in its use of actual partial path cost and estimated remaining path cost

functions. It is often considered more suitable for real-time path planning, however,

because it allows run-time modification of the incurred cost and estimated remaining cost

for individual states as the search progresses. This makes the D* algorithm inherently

more adaptable to the dynamic environments in which autonomous vehicles operate than

many competing algorithms. (Ferguson and Stentz, 05)

As the proposed common autonomous vehicle data model evolves, it is likely that

it will take on a more dynamic aspect. For the present, however, it does not include

features that make D* inherently more desirable than other algorithms. In particular,

182

where pre-mission use is concerned, any algorithm features specifically supporting

dynamic situations are superfluous (this is no longer the case when the planner is used for

real-time vehicle control as described in Chapter VII). In addition, from the standpoint of

the currently implemented common data model, path planning between operating areas is

not dynamic in nature. All that is required is to plan a path that does not enter any avoid

areas (i.e., the possibly dynamic cost of traversing a particular region is not relevant).

Localized path planning and obstacle avoidance between global waypoints is conducted

at a lower level of control than is currently addressed by the AVCL agenda. For these

reasons, a fairly simple best-first search is used for path planning between operating

areas.

Like operating areas, avoid areas are defined in an AVCL agenda using points,

circles, rectangles or polygons. The algorithm begins with an agenda containing only a

candidate path directly from the start to the goal. At each iteration of the search, the

shortest candidate path in the agenda is tested. If this path does not enter any avoid areas,

the best path has been discovered. If it does intrude into one or more avoid areas, it is

removed from the agenda and two new candidate paths are added for each avoid area that

the path enters. New candidate paths are generated by removing the offending path

segment and replacing it with two segments: one from the start of the original segment to

a tangent point on the edge of the avoid area and one from the tangent point to the

original segment’s end. A simple example is provided in Figure 6.17. The initial

candidate intrudes into two avoid areas, so four new candidate paths are added to the

agenda. In the second iteration, the shortest candidate enters one avoid area, so two more

candidates paths are added to the agenda, one of which avoids all prohibited areas. Since

there is a candidate path that is shorter than the newly generated viable plan, the ultimate

solution is not encountered until the fourth iteration of the search.

Despite its simplicity, this search works well in the role of pre-mission path

planning. Additionally, since an AVCL agenda essentially divides the world into two

types of regions (i.e., those that the vehicle is to avoid and those that the vehicle can

enter), it can also be applied to run-time path planning at the agenda level (i.e., global

path planning between operating areas). Since the candidate path-selection criteria is

equivalent to an A* search with a constant estimated remaining cost of zero and partial-

183

path cost equal to the path’s length, the search can be guaranteed to find the shortest path

from the start to the goal. As the robustness of AVCL agenda descriptions increases and

become more dynamic in nature, it is likely that this search will be less useful and other

search algorithms along the lines of D* will become more attractive.

Figure 6.17. A Global Path-Planning Example using a Best-First Search to Discover the

Shortest Path from Start (S) to Goal (G) that Bypasses all Avoid Areas

C. INFERENCE OF DECLARATIVE MISSION GOALS FROM TASK-
LEVEL SCRIPTS

1. Overview
A second possible application of declarative missions is their generation from

scripts. Superficially, it might seem of limited use to convert an existing task-level

behavior script to a declarative agenda, however this capability does have potentially

important applications. If autonomous vehicles are to operate as an integral part of a

larger command and control system, they will be required to exchange information with

systems outside of the autonomous vehicle domain. In most instances, the larger intent of

a mission is of more use to command and control systems than a sequence of low-level

commands. To accomplish this level of data exchange, methodologies must be

developed to reasonably infer the intent of a series of task-level behaviors and to translate

that intent into a declarative agenda. Additionally, this ability can improve data analysis

184

of archived missions by providing multiple levels of interpretation of individual missions.

This approach is particularly advantageous if the semantic richness of the autonomous

vehicle data model described here is extended into a more robust ontology, making the

techniques appropriate for use with Semantic Web applicable. (Daconta, et al., 03).

The process for developing an appropriate declarative goal for a sequence of task-

level behaviors consists of two parts. The most difficult is the inference of the

appropriate goal type. Once a goal type has been selected, the actual derivation of goal

parameters and the generation of the AVCL goal element itself is straightforward.

Three important assumptions are made when inferring goal types from task-level

behavior scripts. The first is that the script corresponds to a single goal (and the transit to

and from the operating area) as opposed to a series of goals, so the entire script is

considered at once. This assumption is made primarily to simplify the implementation

requirements, but the methods discussed in the following sections can be applied

piecemeal to behavior sub-scripts if translation to a series of goals rather than a single

goal is desired. The second assumption is that the task-level behavior sequence can be

translated into a goal that is successfully completed. Finally, no attempt is made to infer

the presence or location of avoid areas. It is assumed that the task-level behavior script

calls for a transit to directly to and from the operating area. As with the single-goal

assumption, this is intended to simplify the overall implementation and does not prevent

future inclusion of sub-script-level analysis that considers the possibility of indirect

transit between operating areas.

Two further points concerning goal-type inference bear mentioning. The first is

that the process can be greatly simplified if the task-level behavior script is annotated

using MetaCommand behaviors. However, the methods described here are intended to

work with annotated or unannotated scripts, so they do not rely MetaCommand

information to infer goal-types. Nevertheless, the presence of MetaCommand behaviors

can improve the performance of these methods. Ultimately, the development of a more

robust ontology can enhance the ability of scripts to be self-documenting and further

simplify their interpretation.

185

The second point relates to the fact that the task-level behavior set in its current

form does not fully implement all of the available AVCL goal types. There is no

requirement to attempt to infer goal types that cannot be expressed as task-level behavior

scripts. The implementations developed in this work, therefore, classify scripts as one of

five possible goal types. The script classifiers will conclude that the most likely intent of

a mission is to perform a point-focused search, perform an area search, patrol an area,

monitor some sort of activity or transmissions, or simply transit to a new location.

2. Mission Goal-Type Inference using Case-Based Reasoning
Two methods were developed for inferring the intent of a series of task-level

scripts. The first is case-based reasoning, a fairly simple form of machine learning that

compares the characteristics of an instance of unknown classification against the

characteristics of a set of known instances. The unknown case is classified based on the

classifications of the most closely matching known instances (Mitchell, 97).

The case-based reasoning system implemented for script classification computes

values for the 15 characteristics described in Figure 6.18. Each is defined on an inclusive

range of zero to one and is assigned a weight, or importance as well. The “distance” of

an unknown instance (x) from a known instance (r) from the set of known recall cases (R)

is computed using Equation 6.5 where wi is the weight assigned to characteristic i

(individual weights are listed in Table 6.1), ci is the function determining the

characteristic value. The recall set consists of 75 “typical” task-level behavior scripts

divided more or less equally between the potential vehicle and goal types.

 () () ()
15

1

,
ii i

i

distance r x w c x c r
=

= −∑ (Eq. 6.5)

Among the advantages of case-based reasoning are its simplicity and its intuitive

nature—a specific classification is easily justified by noting its similarity to a known

instance. Case-based reasoning is also more likely to work reasonably well when a

limited number of recall cases are available than are many other classification methods

(provided the set of recall cases adequately spans the domain). Further, “training” a case-

based reasoning system is easily accomplished by adding instances that are incorrectly

classified to the recall set along with their correct classification.

186

Figure 6.18. Properties used to Classify AVCL Task-Level Behavior Scripts using Case-
Based Reasoning

Stationary commands. This characteristic is a measure of how much the script
calls for a stationary vehicle and is computed as the ratio of stationary
behaviors to total behaviors. Behaviors meeting this criteria include Loiter and
Hover behaviors, zero-value MakeKnots or MakeSpeed behaviors and Waypoint
behaviors that are followed by a Wait behavior.

Area coverage. This characteristic is measures how thoroughly the track defined
by the script covers the convex polygon containing the track. It is computed as
the ratio of swept area (track length times sweep width minus intersections and
out-of-area coverage) to convex polygon area.

Point focus. This characteristic is a measure of how much the mission focuses on
a single point close to the center of the area. It is calculated by determining
the maximum number of times a single point is visited and multiplying by a
distance-from-area-center factor.

Parallel tracks. This characteristic measures the degree of parallelism in the
legs of the mission. It is computed as the ratio of the number of legs for which
at least one of the next three legs is parallel (within five degrees) to the
total number of legs in the mission

Orthogonal tracks. Similar to the parallel tracks characteristic, this
characteristic is computed as the ratio of 90 degree (within five degrees) turns
in the mission to the total number of turns.

Multiple point visits. This characteristic is a measure of how many of the
points defined in the mission are used more than once. It is computed as the
ratio of points that are used more than once to the number of unique points used
in the mission.

Local finish. This characteristic is a measure of the proximity of the final
waypoint to the launch position, adjusted for the type of vehicle.

Number of legs. This characteristic is a measure of the number legs in the
mission and is computed as the reciprocal of the number of waypoints.

Sweep width ratio. This characteristic is a measure of how small the operating
area is relative to the sensor sweep width. It is computed as the ratio of the
stationary sweep area (the area of a circle of sweep width radius) to the area of
the convex polygon containing the track.

Center start. This characteristic measures how quickly the script orders the
vehicle to the center of the operating area. It is computed based on the
proximity of the nearest of the first three mission waypoints to the center.

Fixed vertical. Only relevant for UUV and UAV missions, this characteristic is a
measure of the degree to which the script calls for a fixed depth or altitude.
It is computed as the ratio of commands that call for a depth or altitude change
to commands that can conceivably call for a change in depth or altitude.

On surface. Relevant only for UUV missions, this characteristic is a measure of
the amount of time the vehicle spends on the surface and is computed as the ratio
of the commands that call for the vehicle to be on the surface to commands that
are capable of specifying depth.

Uses search speed. Based on default search speed, this characteristic is
computed as the ratio of behaviors calling for the search speed (within 10
percent of maximum vehicle speed) to speed-ordering behaviors.

Uses patrol speed. This characteristic is computed identically to the uses-
search-speed characteristic but uses the vehicle’s default patrol speed (which
may or may not be the same as the default search speed).

Uses transit speed. Again, this characteristic is computed in the same manner as
the uses-patrol-speed and uses-search-speed characteristics, but uses the
vehicle’s default speed for transit between operating areas.

187

Characteristic Weight Characteristic Weight Characteristic Weight
Stationary
Commands 1.00 Multiple Point Visits 0.25 Fixed Vertical 1.00

Area Coverage 1.00 Local Finish 1.00 On Surface 0.20
Point Focus 0.50 Number of Legs 1.20 Uses Search Speed 0.20
Parallel Tracks 1.00 Sweep Width Ratio 0.50 Uses Patrol Speed 0.20
Orthogonal Tracks 1.00 Center Start 1.00 Uses Transit Speed 0.20

Table 6.1. Characteristic Weights for Case-Based Reasoning Classification of Task-
Level Behavior Scripts

Disadvantages of case-based reasoning include relative inefficiency arising from

the need to compare unknown instances against each recall case. Also an issue is the

potential for a poor recall set (i.e., one that does not accurately reflect the population at

large) to improperly bias classifications or to blanket the search space in such a way that

they are more or less random. This is especially an issue if some or all of the

characteristic values or weights are poorly chosen. (Mitchell, 97)

3. Mission Goal-Type Inference using Naïve Bayes Reasoning
The characteristics used by the case-based reasoning system for task-level-script

classification are also potentially useful with other machine-learning methods. A neural

network or support-vector machine, for instance, might classify unknown instances based

on the same characteristics. Also potentially applicable are probabilistic techniques.

These typically determine a maximum a posteriori hypothesis for unknown instance

classification based on the probabilities of the instance’s characteristics. Among the most

common probabilistic learning methods are those relying on conditional probabilities and

Bayes Theorem to compare the likelihood of all potential hypotheses. The general form

of the equation for the probability of a hypothesis (H) given observed characteristics (c1

through ci) is given by Equation 6.6. Unfortunately, the conditional probabilities on the

right-hand side of the equation can be difficult to determine, so direct use of Equation 6.6

is often impractical. In cases where the values of some characteristics are influenced by

the values of others (i.e., some characteristics are dependent on others), a common

approach is to develop a Bayesian network reflecting the various dependencies. If, on the

other hand, if mutual independence of the characteristic values can be safely assumed, the

equation can be rewritten as Equation 6.7. Values for the individual probabilities in this

equation are derived from the set of known instances, making Equation 6.7 easy to apply

188

in practice. Referred to as naïve Bayes (because of the probably naïve assumption that all

characteristic values are independent), this form of probabilistic learning was

implemented for the purpose of classifying task-level behavior scripts.

 () () ()
()i

i
i ccP

HccPHP
ccHP

...
|...

...|
1

1
1 = (Eq. 6.6)

 () () () ()
() ()i

i
i cPcP

HcPHcPHP
ccHP

⋅⋅
⋅⋅⋅

=
...

|...|
...|

1

1
1 (Eq. 6.7)

Unlike the characteristics used by the case-based reasoning implementation, the

characteristic values of Equation 6.7 are discrete, so the characteristics used by the case-

based reasoning system require modification. The 12 characteristics used in the naïve

Bayes implementation are described in Figure 6.19 and the associated conditional and

unconditional probabilities are listed in Table 6.2. These characteristics were chosen

because of their relative independence as well as the potential that their values might be

indicative of the script’s intent.

The computational overhead of a probabilistic learning system along the lines of

the naïve Bayes classifier is significantly reduced over that of a case-based reasoning

system since the characteristics of individual recall instances are not required at run time

(they are implicitly captured by the probabilities used in the equations). Additionally, the

influence of individual characteristics on the outcome is essentially self adjusting in that

the probabilities associated with characteristics that are not true solution indicators tend

to be the same for all potential hypotheses. This eliminates the need for the somewhat

arbitrary process of tuning the weight applied to each characteristic. It does not,

however, alleviate the requirement to determine and calculate suitable characteristics.

Among the most significant disadvantages of probabilistic machine learning in

this application is a potentially insufficient number of known instances from which to

derive probabilities. In addition to the derivation of potentially invalid probabilities, the

use of too few test cases can result in probabilities of 1.0 or 0.0 that can unacceptably

bias the solution based on a single characteristic value. In order to minimize this

disadvantage, the probabilities in Table 6.2 were computed using all of the 104 available

test cases, rather than just the 75 used in the case-based reasoning system. Unfortunately,

189

even the use of all available test cases does not eliminate probabilities of 1.0 or 0.0. In

order to prevent these values from exerting too much influence on the solution, these

probabilities were manually adjusted to values that are considered more realistic

(indicated with italics in Table 6.2). Additionally, useful data concerning the

unconditional probabilities of the individual hypotheses is hard to come by. In fact, it is

likely that these probabilities are dependent on the overall role of the vehicle in question

(e.g., military, industrial, scientific, etc.). The current naïve Bayes implementation makes

the assumption that all hypotheses are equally likely, effectively basing the ultimate

classification solely on the conditional probabilities of the characteristics.

Monitor
Transmissions

Patrol

Reposition

Characteristic (ci) P(ci|H) P(~ci|H) P(ci|H) P(~ci|H) P(ci|H) P(~ci|H)
Stationary Commands 0.8462 0.1538 0.0500 0.9500 0.0500 0.9500
Area Coverage 0.0769 0.9231 0.8421 0.1579 0.5000 0.5000
Point Focus 0.0500 0.9500 0.0526 0.9474 0.0500 0.9500
Parallel Tracks 0.0500 0.9500 0.6842 0.3158 0.0500 0.9500
Orthogonal Tracks 0.1538 0.8462 0.8421 0.1579 0.1667 0.8333
Multiple Point Visits 0.0200 0.9800 0.8421 0.1579 0.0200 0.9800
Local Finish 0.8462 0.1538 0.7895 0.2105 0.0010 0.9990
Sweep Width Ratio 0.7692 0.2308 0.1579 0.8421 0.7500 0.2500
Number of Legs 0.0750 0.9250 0.8947 0.1053 0.0750 0.9250
Changes Speed 0.5385 0.4615 0.0500 0.9500 0.1667 0.8333
Center Start 0.0500 0.9500 0.1053 0.8947 0.0833 0.9167
Has Sectors 0.0250 0.9750 0.1000 0.9000 0.0250 0.9750

Area Search Point Search
Characteristic (ci) P(ci|H) P(~ci|H) P(ci|H) P(~ci|H)

P(ci)

Stationary Commands 0.0500 0.9500 0.0500 0.9500 0.1183
Area Coverage 0.7000 0.3000 0.8421 0.1579 0.6452
Point Focus 0.0500 0.9500 0.1579 0.8421 0.0430
Parallel Tracks 0.5000 0.5000 0.6842 0.3158 0.4409
Orthogonal Tracks 0.5333 0.4667 0.3684 0.6316 0.4624
Multiple Point Visits 0.1000 0.9000 0.1579 0.8421 0.2366
Local Finish 0.6000 0.4000 0.7368 0.2632 0.6237
Sweep Width Ratio 0.0333 0.9667 0.0500 0.9500 0.2473
Number of Legs 0.8667 0.1333 0.9474 0.0526 0.6559
Changes Speed 0.0250 0.9750 0.0250 0.9750 0.0968
Center Start 0.0667 0.9333 0.5789 0.4211 0.1613
Has Sectors 0.0500 0.9500 0.2105 0.7895 0.0430

Table 6.2. Probabilities Used in the Naïve Bayes Classification of AVCL Task-Level
Behavior Scripts (Italics Indicate Probabilities that were Manually Adjusted

from Computed Values of 0.0 or 1.0)

190

Figure 6.19. Boolean Characteristics used for Naïve Bayes Classification of AVCL Task-
Level Behavior Scripts

Stationary commands. Similar to the characteristic used in the case-based
reasoning system, this characteristic has a value of “true” if the ratio of
behaviors that command the vehicle to remain stationary to behaviors capable
of ordering a reposition is greater than 0.33.

Area coverage. This characteristic is computed as in the case-based-
reasoning system. It is considered “true” if the area swept by the mission
track (minus intersections and out-of-area sweep) is greater than 75 percent
of the operating area.

Point focus. This characteristic is uses the same formula as in the case-
based reasoning system and has a value of “true” if the computed value
exceeds 0.2.

Parallel tracks. This characteristic is based on the degree to which the
mission has parallel tracks. It has a value of “true” if at least 45 percent
of the legs are parallel (within five degrees) to at least one of the next
three legs.

Orthogonal tracks. Like the characteristic of the case-based-reasoning
system, this characteristic is based on the vehicle turns commanded by the
behavior script. If at least 25 percent of the turns commanded by the script
are approximately 90 degrees, then the characteristic has a value of “true.”

Multiple point visits. This characteristic measures the number of mission
points that are visited more than once over the course of the mission. If at
least 25 percent of the mission’s waypoints are revisited, a value of “true”
is assigned.

Local finish. Similar to the corresponding characteristic in the case-based
reasoning system, this characteristic has a value of “true” if the task-level
behavior script calls for launch and recovery at approximately the same
position. The distance threshold upon which the characteristic is based is
dependent on the vehicle type.

Number of legs. This characteristic has a value of “true” if the mission
script defines 10 or more legs not including transits to and from the
operating area.

Sweep width ratio. As with the same characteristic in the case-based
reasoning system, the sweep width ratio is a measure of how small the
operating area is relative to the vehicle’s sensor sweep width. It has a
value of “true” if a stationary vehicle is capable of sweeping at least 75
percent of the area.

Speed changes. This characteristic is a measure of how fixed the ordered
vehicle speed is over the course of the mission. If at least 33 percent of
the behaviors capable of ordering a speed change do so, the characteristic
has a value of “true.”

Center start. This characteristic has a value of “true” if one of the first
three in-area waypoints is close to the center of the convex polygon defining
the operating area.

Has sectors. The only naïve Bayes classifier characteristic that does not
correlate to any characteristic of the case-based reasoning system, this
characteristic measures how much the mission path forms sectors focused on
the center of the operating area. It has a value of “true” if the ratio of
sectors (i.e., three or four leg sequences that start and end near the
operating area center) to the number of mission legs exceeds 0.15.

191

4. Comparing the Performance of the Case-Based Reasoning and Naïve
Bayes Script Classifiers

Testing of both the case-based reasoning and naïve Bayes script-classification

systems was conducted using 104 test missions with known classifications. In addition to

the ideal classification, some test missions were assigned a classification that was

considered acceptable but not ideal. For instance, it might be acceptable to mistake an

area-search script for a patrol script. The test mission set included the missions upon

which the system is based, however no mission was used in its own classification, so this

was not allowed to bias the results. That is, individual test cases were excluded from the

case-based reasoning recall set and naïve Bayes probabilities were recomputed prior to

each classification without the test case. Performance for individual goal-types is

provided in Figure 6.20 in the form of precision (the percentage of missions identified as

a particular type that actually are that type) and recall (the percentage of missions of a

given type that were correctly identified) for both systems. Separate data points are

provided for ideal and acceptable classifications.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Area Search Point Search Patrol Monitor
Transmissions

Reposition Overall

CBR Precision (Ideal) NB Precision (Ideal)
CBR Precision (Acceptable) NB Precision (Acceptable)
CBR Recall (Ideal) NB Recall (Ideal)
CBR Recall (Acceptable) NB Recall (Acceptable)

Figure 6.20. A Comparison of Individual Goal-Type Performance of the Case-Based

Reasoning and Naïve Bayes Task-Level Behavior Script Classifiers

Overall, case-based reasoning system performance was encouraging, with 71 of

104 test scripts receiving their ideal classification. An additional 20 scripts were

192

acceptably, if not ideally, classified. Both precision and recall for most goal types

exceeded 0.75 when using acceptability as the criteria. However, the drop-off in

precision for point-search scripts was significant, with only 65 percent of the scripts

classified as point-searches actually falling into this category. Potential causes for this

anomaly include the absence of characteristics that are truly indicative of point searches

and less-than-ideal weighting of characteristics.

When compared to the case-based reasoning classifier, the naïve Bayes system

performed surprisingly well despite the admittedly small training set. In fact, in virtually

every category both precision and recall using naïve Bayes analysis exceeded that of the

case-based reasoning classifier. In total, 80 of 104 test scripts were assigned their ideal

classification, and an additional 20 were classified acceptably for an overall precision of

0.96. As depicted in Figure 6.20, both precision and recall of the naïve Bayes classifier

exceeded 0.75 for all categories and exceeded 0.85 in every case except point-focused-

search script precision.

Both the case-based reasoning and naïve Bayes implementations provide

promising enough results to merit further investigation. It is likely that overall

performance of these particular systems can be improved by identifying the truly relevant

characteristics and appropriate weights through a more rigorous characteristic versus goal

type analysis, and increasing the size of the training set to more accurately represent the

problem space. Additionally, the investigation of case-based reasoning selection methods

along the lines of k-nearest neighbor, more robust probabilistic learning methods (i.e.,

ones that do not rely upon the assumed independence of the components), and other data-

mining and machine-learning methods might also prove worthwhile. Finally, figure 6.20

clearly indicates that the performance of both systems varies with the type of mission

being classified. This implies that analysis of individual goal-type classification using a

mechanism such as receiver operating characteristics curves (Montgomery and Runger,

03) might prove useful in fine tuning both systems to improve performance.

D. SUMMARY

This chapter has described potential off-vehicle uses for the declarative mission

portion of the proposed common autonomous vehicle data model. Of these, the most

obviously applicable is the conversion of declarative agendas into task-level behavior

193

scripts that can be loaded into vehicles for execution. These conversions rely on Boolean

propositions based on the characteristics of the goals and the operating area, decision

trees, predefined waypoint-pattern templates, and in some cases artificial intelligence

planners to generate task-level behavior scripts. Limitations arising from the static nature

of scripts notwithstanding, this methodology can be used to convert most agendas into

task-level behavior scripts that will closely resemble manually developed scripts.

The second off-vehicle application of declarative agendas is the reverse

conversion—that is, converting a task-level behavior script into an agenda. This sort of

translation is potentially important if autonomous vehicle systems are to interact with

external command and control systems. Machine learning techniques have obvious

applications in this area since they are commonly used for pattern recognition and

classification. Two such systems were implemented as a means of demonstrating this

capability. Of these a naïve Bayes system provided the best overall performance from a

classification accuracy standpoint, but both systems performed well enough to justify

further investigation.

Ultimately, the off-vehicle usefulness of declarative agendas is limited. The next

chapter, however, will describe the development of an autonomous vehicle control

architecture that more fully implements the semantics of declarative AVCL missions and

provides for an increased level of autonomy to vehicles currently relying on more

primitive control architectures.

194

THIS PAGE INTENTIONALLY LEFT BLANK

195

VII. THE EXTENDED RATIONAL BEHAVIOR MODEL (ERBM)
DEVELOPMENT AND IMPLEMENTATION

A. INTRODUCTION

In and of itself, the use of declarative missions as described in Chapter VI does

not provide a terribly strong case for the usefulness of AVCL’s declarative goal-based

mission definition functionality. There is simply no way to expose, much less take

advantage of, all aspects of a declarative agenda short of an on-vehicle implementation

that monitors and adapts mission flow to a developing situation. However, the

techniques of Chapter VI for pre-mission conversion of declarative agendas to task-level

behavior scripts can be used as the basis for a multi-layer autonomous vehicle control

architecture.

There are two advantages to developing an autonomous vehicle control

architecture around the capabilities of a data model along the lines of AVCL. First, it

allows for more abstract mission definition than the majority of existing architectures.

That is, mission definition is independent from the behaviors that will ultimately drive the

vehicle. Further, the translation mechanisms described in Chapter V make it possible to

install the control architecture on virtually any vehicle with minimal modification to the

existing control system. In effect, the nature of the data model itself facilitates the

development of a multi-layer control architecture that can be used with virtually any

vehicle.

The exemplar control architecture that was implemented for this dissertation is an

expanded version of the previously discussed RBM. The basic relationship of this

Extended RBM (ERBM) architecture to the AVCL data model and an existing vehicle

controller is depicted in Figure 7.1. At the top level, the ERBM Strategic level controls

the execution of a declarative agenda by issuing task-level behavior scripts to the Tactical

level. The Tactical level is responsible for controlling execution of the most recent script

and does so by issuing individual behaviors to the Execution level. Since the Execution

level is effectively comprised of the vehicle’s existing control architecture, it is necessary

to translate behaviors to the target vehicle’s native command syntax as they are issued.

The only vehicle-specific requirements are provisions for the existing architecture to

196

receive and execute commands from the ERBM controller, and similarly to provide the

Strategic and Tactical levels access to adequate vehicle state information (e.g., telemetry,

sensor and system data) to maintain the appropriate level of situational awareness.

Figure 7.1. The Extended Rational Behavior Model (ERBM) Data and Command Flow

for a Typical On-Vehicle Implementation

The remainder of this chapter provides a description of the ERBM, particularly

where it differs from the originally proposed RBM, and a discussion of the

implementation details on the NPS ARIES UUV.

B. THE EXTENDED RATIONAL BEHAVIOR MODEL (ERBM)

1. Overview
As stated in the RBM overview of Chapter II, the RBM is modeled on the

command structure of a naval vessel. The ERBM maintains this conceptualization, but

197

modifies a number of aspects. Since the Execution level consists of the vehicle’s own

control system, it is not addressed by the ERBM. However, functionality along the lines

of the RBM Execution level is assumed and the conceptual relationship between the

ERBM Execution level and the rest of the architecture remains the same. Specifically, it

is assumed that the Execution level is responsible for the software to hardware interface

and maintains vehicle stability as it executes the behaviors specified by the Tactical level.

In order to facilitate simplicity and determinism, the characteristics, interfaces and

even the programming paradigms of the RBM Strategic and Tactical levels are rigorously

defined (Byrnes, 93). Table 7.1 lists relevant Strategic and Tactical level restrictions.

Many of these characteristics, however, are unrealistic given the level of abstraction of

AVCL goals. The ERBM, therefore, modifies or relaxes several characteristics.

RBM Strategic Level
Symbolic computation only. Contains the mission specification and doctrine.
No storage of internal vehicle or world state variables.
Rule-based implementation made up of a rule set and inference engine.
Non-interruptible. Not event driven.
Directs the tactical level through asynchronous message passing.
Messages may be either commands or queries requiring Boolean responses.
Operates in the discrete domain independent of time.
Building block: goals.

RBM Tactical Level
Provides asynchronous interface between Strategic and Execution levels.
Behaviors reside here and may execute concurrently.
Behaviors are implemented as methods of objects.
External interface consists of two parts: behavior activations from the strategic level and
command / telemetry paths to / from the Execution level.
World and mission models maintained here.
Responds to Strategic level queries with a logical TRUE / FALSE.
Not interruptible except for data transfers. Hard deadlines cannot be guaranteed.
Operates in the discrete event / continuous time domains.
Building block: programming objects with behaviors.

Table 7.1. Characteristics of the Strategic and Tactical Levels of the RBM as Defined in
(After: Byrnes, 93)

Rather than focusing on implementation details of the individual levels, the

ERBM concentrates on the level of decision-making required at various levels and the

interfaces between levels. Implementation details are not constrained so long as the

communication model is adhered to. Determinism is not built into the model itself, but is

198

dependent on the implementation. It is permissible for different implementations to use

different behavior sequences to accomplish the same goal. It is important, therefore, to

differentiate between the requirements of the ERBM and the details of a particular

implementation.

2. The Strategic Level
The Strategic level of the RBM consists of a set of rules and the inference engine

that resolves them. When implemented using a symbolic programming language along

the lines of Prolog or the C-Language Integrated Production System, the mission

specification and operating system make up the entire Strategic level implementation

(Byrnes, 93). This is not possible with AVCL goals since they are not directly

executable. The ERBM Strategic level, therefore, must be implemented to load, interpret

and execute arbitrary AVCL agendas (i.e., the mission specification is an input to, not a

part of, the Strategic level). The role of the ERBM Strategic level is to generate task-

level behavior scripts that will accomplish the goals defined in the AVCL agenda. It

accomplishes this through the application of techniques along the lines of those described

in Chapter VI in response to the real-world events. The characteristics of the ERBM

Strategic level most closely related to those of the RBM are listed in Table 7.2.

ERBM Strategic Level
Contains the mission specification.
Symbolic and numerical computation as required.
Implementation must support real-time goal decomposition into task-level behavior scripts.
Maintains a world model sufficient for determination of goal success and failure.
Interruptible, partially event driven.
Directs the tactical level through asynchronous message passing.
Messages may be either task-level behavior scripts or queries.
Operates in the discrete domain with limited dependence on time.
Task building block: AVCL goals.

Table 7.2. Characteristics of the ERBM Strategic Level

Not surprisingly, there are a number of significant differences between the ERBM

Strategic level and the Strategic level of the original RBM. First, the ERBM Strategic

level definition does not prohibit numerical computation and allows the use of vehicle or

world state information. Nevertheless, numerical computation is not elevated as a core

Strategic level responsibility. Rather, such non-symbolic operations are permitted in

199

order to facilitate the implementation of a world model and planning algorithms in

support of task-level behavior script generation. Examples might include either periodic

sampling of vehicle telemetry to facilitate monitoring of goal execution status, or

definition of the operating area in Cartesian space for the purpose of search pattern

development. In short, neither the type of computation conducted nor the type of

information maintained at the Strategic level is constrained by the ERBM, but the

computation and information must still directly support the generation of task-level

behavior scripts that accomplish the goals defined by the agenda.

Communication with the Tactical level takes two forms. When the Strategic level

develops a course of action in the form of a task-level behavior script, it is immediately

sent to the Tactical level. It is expected that the Tactical level begins execution of a script

immediately upon receipt even if it requires the interruption of a currently executing

script. In this way, the Strategic level can replan as required when new information is

received. The second method of communication with the Tactical level is through

queries. Whereas the RBM only allowed queries requiring a Boolean response, the

ERBM implements a set of query messages that can be used to request various types of

status information. The Tactical level is expected to provide the requested information

using the appropriate response. Available ERBM inter-level messages are described in

Table 7.3.

A final difference between the RBM and ERBM Strategic levels is that the

ERBM Strategic level is interruptible and partially dependent on timing. This serves two

purposes. The first purpose is to support AVCL goal-timing requirements. Since

determination of goal success is a Strategic-level responsibility, it is at this level that a

failure must be triggered if a goal fails to succeed in the allotted time or the vehicle does

not arrive in the operating area by the designated start time. The second purpose is to

support a shift from the RBM communications model, in which lower levels provide

information only upon request by the next higher level, to a model where the lower level

provides information whenever it becomes available. Under this model, the Tactical

level can interrupt the Strategic level and potentially initiate replanning at any time by

providing information concerning the status of the currently executing script.

200

Message From To Description Parameters
Strategic Tactical QueryPosition
Tactical Execution

Request for the most
recent vehicle position. none

QueryScriptComplete Strategic Tactical
Request for the status
of the current task-level
behavior script.

none

QueryCommandComplete Tactical Execution
Request for the status
of the currently active
task-level behaviors.

none

Tactical Strategic Position
Execution Tactical

Report of the vehicle
position (Cartesian).

X (double),
Y (double)

ScriptComplete Tactical Strategic
Status report for the
current task-level
behavior script.

status (boolean)

ScriptFail Tactical Strategic
Report that the current
script cannot be
completed.

none

CommandComplete Execution Tactical
Status report for the
currently active task-
level behaviors.

status (boolean)

CommandFail Execution Tactical
Report that the active
behaviors cannot be
completed.

none

TargetFound Tactical Strategic
Report that a search
objective has been
located.

target type
(string)

TargetDestroyed Tactical Strategic
Report that an Attack or
Demolish objective has
been destroyed.

target type
(string)

ContaminantDetected Tactical Strategic
Report that a
contaminant has been
detected

contaminant
type (string)

ContaminantRemoved Tactical Strategic
Report that a detected
contaminant has been
cleaned.

contaminant
type (string)

SignalDetected Tactical Strategic
Report that a signal of
interest has been
detected

frequency
(double)

StrategicEnding Strategic Tactical
Report that the
Strategic-Level thread
is terminating

none

TacticalEnding Tactical Execution
Report that the
Tactical-Level thread is
terminating.

none

Table 7.3. Available ERBM Inter-Level Messages

This push-pull communications model significantly reduces inter-level

communications requirements. Implementation of the ERBM Strategic level using the

RBM’s pull-only communications model calls for repeated polling of the Tactical level to

201

obtain updated position and goal-specific information. This requires two messages per

polled data item for each iteration of the Strategic level’s think-decide-act loop.

Implementation using a push-pull or push-only model potentially reduces message

requirements by at least 50 percent by eliminating queries. Additionally, the push-pull

communications model more accurately mimics the command relationships and

interactions of a manned vessel than the pull-only model. This approach may even

facilitate placing the ERBM controller off-line from the vehicle further increasing

installation flexibility and minimizing on-vehicle installation requirements.

3. The Tactical Level
The functionality of the ERBM Tactical level differs only slightly from that of the

originally proposed RBM and many of the characteristics listed in Table 7.1 are largely

unchanged. The characteristics of the ERBM Tactical level (Table 7.4) have evolved

from those of the RBM to support the use of AVCL task-level behaviors and the push-

pull communications model described above. The responsibilities of the Tactical level

are twofold. The first is to direct the activities of the Execution level using the current

task-level behavior script. The second is to develop and provide the information required

by the Strategic level to monitor the status of the current goal, replan when required, and

determine goal success or failure.

ERBM Tactical Level
Provides asynchronous interface between Strategic and Execution levels.
Initiates activation and termination of task-level behaviors in accordance with the AVCL behavior
activation and termination criteria.
External interface consists of two parts: behavior-script activations from the Strategic level and
command/telemetry data paths to/from the Execution level.
Maintains a world model sufficient to determine the execution status of the current task-level
behavior script.
Responds to Strategic level queries with a set of predefined messages. May provide status
information using these messages without a Strategic level request.
Directs the Execution level by asynchronous message passing.
Messages may be either individual task-level behaviors or queries.
Interruptible by the Execution level only by command failure notification and data transfers. Can
be interrupted by the Strategic level at any time to modify tasking.
Operates in the discrete event / continuous time domains.
Task building block: AVCL task-level behaviors.

Table 7.4. Characteristics of the ERBM Tactical Level

202

The Tactical level directs the Execution level through the issue of individual task-

level behaviors. The behavior activation and termination criteria described in Chapter IV

must be observed. In many cases the Tactical level simply forwards the behaviors

contained in the current script, although it is permissible for the Tactical level to make

modifications as long as the they do not conflict with Strategic level directives. As an

example, that Tactical level might insert intermediate waypoints to avoid obstacles while

transiting between the global waypoints specified by the Strategic level.

The second responsibility of the ERBM Tactical level is to develop and maintain

a world model that supports inter-level reporting requirements. Model contents might

include detected targets (type, location, classification and status), signals of interest

detected, and the vehicle system status effecting the ability to execute task-level behavior

scripts. Thus, as with the original RBM, the Tactical level is the appropriate location in

the architecture for the inclusion of software modules pertaining to simultaneous

localization and mapping, object and feature detection and classification, and mission

system or payload management.

The communication interface between the Tactical and Execution levels is

semantically similar to the interface between the Strategic and Tactical levels in that it

uses a push-pull model. The Tactical level can issue new task-level behaviors to the

Execution level at any time. It is assumed that one or more of the translation mechanisms

described in Chapter V will be required to convert the AVCL task-level behaviors to the

appropriate vehicle-specific format. Additionally, it is permissible (but not required) for

the Tactical level to use the query messages listed in Table 7.3 to request information

from the Execution level. The Execution level is expected to respond to Tactical level

queries with the appropriate message. It is also permissible for the Execution level to

provide information without its being requested.

It is worth noting that the only required modifications to the existing vehicle

controller are the implementation of data-passing interfaces with the Tactical level and

dynamic behavior script activation. These can be developed in a manner appropriate to

the vehicle on which the ERBM controller is to be utilized. Networked message passing,

piped inter-process communication and shared memory are all viable options depending

203

on the implementation circumstances. For the time being, it is assumed that the Tactical

level has at least limited access to the vehicle’s raw sensor data since messages have not

yet been implemented to request or transfer this information. For this and other reasons,

a great deal of future work can be applied to the ERBM Tactical level.

In summary, whereas the Strategic level decomposes goals into task-level

behavior scripts for issue to the Tactical level, the Tactical level decomposes task-level

behavior scripts into individual behaviors for issue to the Execution level at the

appropriate time. Additionally, the Tactical level is responsible for interpreting the raw

data available at the Execution level in order to identify and report significant events

along the lines of target detections and system malfunctions. A push-pull

communications model is utilized throughout to best exchange information between

levels.

4. Exemplar ERBM Implementation

a. Strategic Level Implementation

Development of an exemplar ERBM implementation in the course of this

work focused primarily on the Strategic level. Among the most important choices to be

made during implementation of the ERBM Strategic level is the nature of the decision

mechanism since it determines when planning and replanning are required, how that

planning is conducted, and when a goal has succeeded or failed. In the development of

multi-layer vehicle control in support of NPS ARIES rendezvous with another UUV, a

finite state machine was chosen because it provides a clear framework for the design of

the logic of the rendezvous process and also provides a mechanism for high-level control

over the process (Nicholson, 04). Building on the success of this implementation, the

ERBM implementation described here also relies on finite-state-machine-based control at

the Strategic level. Thus, the Strategic level can accurately be described as nested finite

state machines. As with the original RBM, a mission-level state machine determines

which goals are executed in what order. A goal-specific finite state machine controls

planning and replanning for each goal in the mission.

At the heart of the Strategic level is a mission-flow controller that contains

the agenda’s mission-level finite state machine as defined by the goal list portion of the

AVCL document, as well as the set of avoid areas listed in the constraints portion of the

204

agenda (including any avoid areas that might be added dynamically as the mission

proceeds). The mission-flow controller maintains a reference to the currently executing

goal and executes mission-level finite state machine transitions upon goal success or

failure. Additionally, the flow controller instantiates a goal-specific planner along the

lines of the rendezvous planner of (Nicholson, 04) for each goal and relays information

from the Tactical level to the planner associated with the currently executing goal

planner.

Goal-specific planners are responsible for all task-level behavior script

generation required for the accomplishment of a given goal. Each planner consists of a

goal-type-specific finite state machine, state variables suitable for control of state

machine transitions, and methods capable of generating task-level behavior scripts

appropriate for each state in the finite state machine. As the mission progresses, state

transitions result in replanning based on the new state and immediate relay of the

generated task-level behavior script to the Tactical level. Upon reaching the finite state

machine’s terminal state (which can indicate goal success or failure), the flow controller

is notified so that the mission-level state machine transition can be executed and planning

begun for the next goal in the agenda. The goal-level finite state machines are depicted

in Figures 7.2 through 7.9. Not depicted are the state machines corresponding to the

Rendezvous goal type since it is documented in detail in (Nicholson, 04) or the

Reposition goal type which consists of only Transit and Complete states. For the sake of

simplicity, status reporting is not depicted in these figures, but the transmission of any

reports that may be specified by an AVCL goal is implicitly included in the transitions.

Figure 7.2. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL Environmental Sampling Goals

205

The simplest goal-specific finite state machines (not including the

Reposition goal) are associated with the SampleEnvironment, IlluminateArea, Jam,

MonitorTransmissions and Patrol goals (Figures 7.2 through 7.5). As with all goal-

specific state machines, the start state controls the transit to the operating area. Upon

arrival the finite state machine transitions to either an execute or alert state (i.e., be

prepared to execute, but do not do so until ordered). The set of task-level behavior

sequence for the execute state of a Jam, IlluminateArea or MonitorTransmissions goal

directs the vehicle to the center of the operating area and then activates the jammer,

illuminator or receiver. The assumptions associated with the inability of the present task-

level behavior set to control mission-specific systems are still germane.

Figure 7.3. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL IlluminateArea and Jam Goals

Figure 7.4. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level Use in

the Accomplishment of AVCL MonitorTransmissions Goals

206

The behavior sequence for the execute phase of a Patrol or

SampleEnvironment goal consists of a search pattern generated as described in Chapter

VI. A transition from the execute state or alert state to the complete state (which can

indicate either goal success or failure) is executed at the goal’s designated end time.

Additionally, the SampleEnvironment state machine transitions to the complete state if

the pattern is concluded prior to the designated end time. The Patrol goal state machine,

on the other hand, initiates a new search pattern if it finishes the pattern prior to the

designated end time. The SampleEnvironment, MonitorTransmissions, and Patrol state

machines transition from the execute state back to the same state upon detections to

facilitate reporting.

Figure 7.5. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL Patrol Goals

Figure 7.6. A Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL Search Goals

207

Only slightly more complicated is the finite state machine associated with

AVCL Search goals (Figure 7.6). This finite state machine is similar to the one

associated with Patrol goals, however it does differ somewhat in the transitions. Since a

Search goal can direct the vehicle to search for single or multiple targets, there are two

possible transitions from the execute state following a detection. If there is only a single

search objective, a transition to the complete state is appropriate. If there are potentially

multiple targets, the post-detection transition is back to the execute state so that the

search can continue. Upon pattern completion, the finite state machine transitions to the

complete state regardless of the timing since the search pattern was specifically planned

to achieve the probability of detection ordered by the goal.

Figure 7.7. Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL MarkTarget Goals

The goal-specific finite state machines associated with the remaining goal

types (MarkTarget, Decontaminate, Attack and Demolish) each build upon one of the

preceding state machines. The MarkTarget finite state machine (Figure 7.7) is similar to

the Patrol state machine except that upon target detection, the transition is to a mark

target state (where it remains until the goal’s specified end time) rather than back to the

execute state.

Similarly, the Decontaminate finite state machine (Figure 7.8) extends the

state machine associated with SampleEnvironment goals. In this finite state machine,

208

when a contaminant is detected, a transition is made to a decontaminate state. When the

contaminant has been successfully removed, the state machine transitions back to the

execute state and the sampling (search) pattern continues.

Figure 7.8. Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL Decontaminate Goals

Figure 7.9. Goal-Type-Specific Finite State Machine for ERBM Strategic Level use in

the Accomplishment of AVCL Attack and Demolish Goals

209

Finally, the finite state machine used to control the execution of Attack

and Demolish goals (Figure 7.9) is an extension of the one associated with Patrol goals.

The added state here is an engage state that controls the actual attack or demolition of the

encountered target. The transition from this state is executed when the target has been

successfully engaged with the controller returning to the execute state if the goal calls for

the attack of multiple targets or transitioning to the complete state the goal calls for the

attack of only one. Regardless of the current state, the controller transitions to the

complete state if the goal times out.

It must be noted that while the finite state machines associated with the

goals imply full functionality, scripts cannot presently be generated to fulfill the

requirements of the added state (mark target, decontaminate, or engage). As with pre-

mission use of these goal types, full implementation in the ERBM can likely be

facilitated by the development of a standardized mission system interface functionality

that is incorporated into the task-level behavior set.

b. Tactical Level Implementation

At the Tactical level, the current exemplar implementation issues

individual task-level behaviors from the current script to the Execution level at the

appropriate times. Thus, it complies with the ERBM Tactical level requirements

discussed in the previous section, but at the same time it has significant room for growth.

Interpretation of sensor data, onboard systems monitoring and control, local path

planning and obstacle avoidance, and object classification in particular are areas in which

Tactical-level functionality can improve. However, given the numerous ongoing research

efforts in these and other areas that might be applied at the Tactical level, the decision

was made to focus ERBM development on other aspects of the architecture for the time

being. Ultimately, improvement of the Tactical level functionality through the addition

of capabilities such as obstacle avoidance, contact detection and classification, and

simultaneous localization and mapping provides a number of potential areas for future

work relating to the proposed ERBM.

210

C. RBM STRATEGIC AND TACTICAL LEVEL IMPLEMENTATION ON
THE ARIES UUV

1. The Existing ARIES Control Architecture
The internal configuration of the NPS ARIES vehicle upon which the ERBM

controller exemplar is installed is depicted in Figure 7.10. Onboard computers include a

PC/104 stack containing two Pentium III processor boards, two 40 gigabyte hard drives

and various input / output cards. The two processors operate as independent computers,

designated QNXE and QNXT, each running the QNX Neutrino real-time operating

system (QNX, 05). Although independent, the QNXE and QNXT computers maintain a

shared memory block that allows processes on either computer to share information

without the overhead of network or inter-process communication. The QNXE computer

controls mission execution and directly interacts with the vehicle control actuators. The

execution process (RExec) runs on this computer and controls the vehicle as directed by

the track.out waypoint file. The QNXT computer, on the other hand, is primarily

responsible for navigation and sensor processing and provides filtered navigation and

sensor data to the QNXE RExec process and other onboard systems.

A second PC/104 stack containing a single Pentium III processor board and an 80

gigabyte hard drive is available for non-real-time processing. This computer, designated

PC104, runs the Windows XP operating system and is used for non-time-critical

processing. In the existing vehicle configuration, the PC104 computer is used primarily

for sonar and video image processing and interpretation. It communicates with the

QNXE and QNXT computers via an onboard 10Base2 Ethernet connection. It is on this

computer that the ERBM controller is installed.

The normal means of communication between off-board systems and onboard

computers is via wireless network connection. Limited communication with ARIES

while the vehicle is submerged is provided by a Benthos acoustic modem. This

connection is used to monitor vehicle location during a mission and direct vehicle activity

over the course of a mission as described in (Marr, 03). Additionally, the acoustic

modem is used for inter-vehicle communication with other submerged vehicles and

network nodes.

211

Figure 7.10. The NPS ARIES UUV Configuration (After: Marco, 01)

2. Incorporation of ERBM onto the Existing ARIES Control
Architecture

The ERBM controller is implemented in the Java programming language and

installed on the ARIES PC104 computer. A single multi-threaded process implements

the ERBM Tactical and Strategic levels as well as all required translators and network

connections. Future improvements to the Tactical level (i.e., simultaneous localization

and mapping, target and obstacle detection and classification, etc.) might be implemented

212

as threads in the existing Java program or as separate processes (written using any

programming language) that communicate with the ERBM controller’s virtual machine

via a network connection.

At run time, the ERBM controller is started prior to the QNXE RExec process.

The controller loads the AVCL declarative mission, initializes the mission-flow

controller, and establishes a server socket for the QNXE processes to connect to as

required. The ERBM controller accepts multiple connections and each connection is

configured as read-only (to the PC104), write-only (from the PC104), or read-write.

Beyond this distinction, all connections are treated identically. All read-only and read-

write connections can send any valid message to the ERBM controller at any time.

Similarly, any message or translated task-level behavior to be sent from the ERBM

controller will be transmitted over all active read-write and write-only connections.

Strategic-level goal and mission timing commences when the first connection (regardless

of type) is established. The current ARIES ERBM implementation uses read-only and

write-only connections exclusively.

All modifications and additions to existing ARIES control software are

implemented on the QNXE computer. The software architecture of the ERBM-controlled

execution level is depicted in Figure 7.11. The most significant modification to the

existing architecture is the implementation of an ERBMConnection process that waits for

new waypoint lists (track.out files) to be issued by the Tactical level of the ERBM

controller. Upon receiving a new waypoint list, the ERBMConnection process archives

the current track.out file, saves the new one to the hard drive, and sets a shared-memory

script-status flag to indicate to the RExec process that a new script is ready to be loaded

and executed. When the ERBMConnection process receives a “TacticalEnding” message

instead of a track.out file (indicating that from the standpoint of the ERBM controller the

mission is complete), it sets the shared-memory flag to indicate that the mission is

complete and that the RExec process is to initiate any mission-termination procedures

upon achieving the last waypoint in the currently executing script. The

ERBMConnection process utilizes a single write-only (from the perspective of the

PC104) ERBM connection.

213

Only minimal modification of the existing RExec process is required to

implement ERBM control. Two initialization steps, launching the ERBMConnection

process and establishing a read-only connection (from the perspective of the PC104) with

the ERBM controller, and two mission-completion steps, terminating the

ERBMConnection process and closing the ERBM-controller connection are implemented

in the RExec process.

The most significant changes to the RExec process deal with waypoint list

execution. At the start of each iteration of the RExec control loop, the shared-memory

script-status flag is checked. If the flag indicates that a new track.out file is present, the

new file is loaded for execution and the shared-memory flag is reset. If the flag indicates

that no new track.out file has been received, execution of the current file continues

uninterrupted. If the flag indicates that the ERBM controller has terminated, execution of

the current waypoint sequence continues uninterrupted and mission-termination

procedures are initiated when the last waypoint is reached. In this case, the shared-

memory flag is not rechecked in future closed-loop iterations. Thus, the ERBM

controller is able to interrupt and replace the currently executing waypoint list at any

time. Ultimately, the ERBM controller determines that a particular waypoint sequence is

to be the mission’s last whether it is successfully completed or not.

Figure 7.11. The ERBM Controller Implementation on the ARIES UUV

214

In most cases, the currently executing waypoint list runs to completion without

interruption. In these cases, the RExec process must send a “ScriptComplete: true”

message to the ERBM controller (unless a “TacticalEnding” message has been received)

and continue towards the current waypoint until the controller issues the next waypoint

sequence. This requires modification of the existing RExec mission termination criteria

since the baseline RExec implementation commences mission completion procedures

immediately after reaching the final waypoint of the list. To support ERBM

implementation, a three-second delay is instituted to allow time for the ERBM controller

to issue the next track.out file. If the ERBM controller does not provide a new script

within this time limit, mission termination procedures are initiated without regard to the

status of the AVCL mission.

A number of safeguards are implemented to ensure safe vehicle operation. The

first is the retention of all existing RExec mission-abort logic. Criteria such as waypoint

time-out, leak detection, and hardware malfunctions initiate mission abort procedures

regardless of ERBM status, as will an abort order received via the Benthos acoustic

modem. In addition, a three-second time-out is implemented both at mission start and

following waypoint-list completion to ensure the vehicle does not operate for an extended

period of time without a valid control script. Finally, signal handlers are implemented to

prevent network problems (i.e., socket errors) from causing the RExec process to

terminate unnaturally and leave vehicle actuators, most importantly propellers, active but

uncontrolled. Receipt of a socket-related error signal (i.e., SIGPIPE or EPIPE), most

likely resulting from unannounced or accidental closure of the socket, terminates

networked message transfer between QNXE processes and the ERBM controller. In

these cases, the mission is allowed to continue and terminate normally when the final

waypoint in the most recently activated track.out file is achieved.

Testing of this ERBM implementation in both real-world and virtual

environments is documented in the next chapter as is the connection of the ARIES

control software to a six-degree-of-freedom physically-based model in support of

simulation testing. It is important to note that this ERBM implementation does not

preclude the execution of ARIES missions without ERBM control. In fact, ARIES

215

waypoint lists can be loaded and run directly (i.e., without ERBM controller use) in

exactly the manner as they were prior to ERBM implementation.

D. SUMMARY

The ERBM is a multi-layer hybrid control architecture based on the relationship

between AVCL’s declarative and scripted mission-definition capabilities. An

enhancement of the original RBM architecture, the ERBM improves the capabilities and

robustness of the Strategic and Tactical levels while maintaining RBM’s correlation to

the command hierarchy of a manned vessel.

At the Strategic level, the ERBM applies the techniques described in Chapter VI

to convert declarative goals into task-level behavior scripts that are to be executed by the

Tactical level. Since these techniques are applied at run time and can generate new

scripts at any time in response to real world exigencies, the ERBM is better able to fully

utilize all AVCL declarative agenda aspects. The Tactical level controls the execution of

task-level behavior scripts generated by the Strategic level by issuing individual

behaviors to the Execution level.

The most important improvement over existing autonomous vehicle control

paradigms that is provided by the design of a control architecture around the functionality

of a data model along the lines of AVCL is its vehicle-independence and the ease with

which it can be used to augment an existing vehicle controller. Specifically, the ability to

convert AVCL task-level behavior sequences into vehicle-specific tasking allows the

ERBM architecture to be installed on top of arbitrary vehicles with minimal modification

to the existing vehicle control software (and no modification of the vehicle-specific

command set). This A significant increase in the ability to operate in uncertain

environments is provided by the realtime planning capability of the ERBM architecture

described here.

The ability to implement the ERBM on top of an existing vehicle control

architecture is demonstrated by installation on the NPS ARIES UUV. Fairly simple

modifications to the existing ARIES control software enables the vehicle to dynamically

load and execute waypoint sequences received through a network connection as the

mission progresses. The ERBM controller uses the AVCL-to-ARIES XSLT stylesheet to

216

convert task-level behaviors generated by the Tactical level into ARIES waypoint lists.

Results of the ARIES ERBM implementation are discussed in Chapter VIII.

It is also reasonable to infer from the experimental results documented in the next

chapter that, the planning algorithms and finite-state-machine-based control used by the

ERBM implementation described here provide significantly more robust autonomy than

many architectures currently in use. This is not to say, however, that the ERBM

architecture is inherently superior to other available autonomous vehicle controllers.

Other architectures such as Draper Laboratory’s ADEPT and the Pennsylvania State

University Advanced Research Laboratory’s Intelligent Controller also provide for

significant autonomy. In fact, many of the planning algorithms developed in the course

of this work might be applicable in systems along the lines of ADEPT and the Intelligent

Controller and those implemented within these architectures might prove useful in an

ERBM implementation as well.

The primary strength of the ERBM controller is the level of vehicle independence

that it achieves and the data-model-based mechanisms by which it achieves this

independence. These same mechanisms might ultimately prove useful not only in the

evolution of the ERBM architecture, but in the development of other vehicle-independent

architectures and the extension of existing architectures as well.

217

VIII. EXPERIMENTATION

A. INTRODUCTION
This chapter provides a discussion of experiments conducted in support of this

work. Experiments are designed to test the procedures and assertions introduced in

previous chapters. The preponderance of both simulated and in-vehicle experimentation

involves the development and implementation of the ERBM. Thus, ERBM testing

comprises the bulk of this discussion. Conversions between AVCL and vehicle-specific

data formats are discussed in great detail in Chapter V and receive only brief attention

here. The successful implementation of the ERBM controller on the ARIES UUV,

however, relies heavily on the stylesheet-based AVCL-to-ARIES conversion, so the

ability to automatically convert AVCL to vehicle-specific formats is implicitly

demonstrated. Similarly, the techniques for generating task-level behavior scripts to

accomplish declarative goals (Chapter VI) is demonstrated by the ARIES ERBM

implementation and the simulation results for other vehicle types. Finally, testing of the

case-based reasoning and naïve Bayes systems for inferring declarative goals from task-

level behavior scripts is discussed in Chapter VI rather than here.

This chapter begins with a description of mission simulation in the AUVW. This

is immediately followed by a description of the physically-based models used by the

AUVW during simulations. Section C provides a brief discussion of translations between

AVCL and vehicle-specific formats. Also provided in Section C is a discussion of

experimental results of declarative agenda missions run using the ERBM controller.

ERBM results are provided for simulated UUV, USV, and UAV missions as well as real-

world UUV (ARIES) missions.

B. MISSION SIMULATION

1. Overview

Autonomous Vehicle missions are simulated in a virtual environment in support

of this work using the AUVW. Described in more detail in Appendix B, the AUVW is

Java application for mission planning and rehearsal and includes utilities for conversion

between AVCL and vehicle-specific tasking languages as described in Chapter V.

Additionally, the AUVW incorporates physically-based UUV, USV, and UAV models

218

for use in simulation and three-dimensional mission visualization using interactive X3D

scenes and the IEEE Distributed Interactive Simulation (DIS) protocol (IEEE, 95).

There are two methods of running simulated missions using the AUVW. The

most common relies on vehicle-type-specific execution software incorporated directly

into the AUVW. Each AUVW vehicle-type-specific component implements the full set

of applicable task-level behaviors. Additionally, the ERBM controller is available to

provide high-level control of mission execution during declarative agenda simulation.

This mode of mission simulation is useful for testing mission flow and vehicle

performance during the execution of missions defined with AVCL.

The second method of simulating mission execution using the AUVW models

involves their use as a simulation engine for in-vehicle control software. When run in

this mode, the appropriate vehicle-type-specific model is executed by itself and

establishes a server socket for on-vehicle control software connection. After establishing

a connection with the AUVW model, the on-vehicle software runs normally except that it

uses simulation values instead of onboard sensor-derived values. At the point in the

closed-loop control cycle responsible for reading or computing telemetry and sensor

values, a string containing a white-space-delimited series of current telemetry values and

control settings is transmitted to the AUVW model. The model uses the telemetry and

control information to calculate updated telemetry and sensor information that are

transmitted back to the vehicle software using a similar telemetry string. Common

telemetry-string fields used by all AUVW models are listed in Table 8.1. Additionally,

each telemetry string contains 50 additional values that are used to transmit vehicle-type-

specific control and sensor settings and values. The interpretation of each of these

model-specific values is available in the AUVW documentation.

All simulation results documented in this chapter for USV and UAV missions

were obtained using embedded AUVW vehicle-execution components. UUV simulation

results, on the other hand, were obtained using NPS ARIES UUV on-vehicle software

communicating with the AUVW model using a network. All simulations were run

against the appropriate vehicle-type-specific model. The remainder of this section

provides a description of each of the vehicle-type-specific models.

219

Telemetry
String Field

State
Variable Description

1 flag Either "uuv_state", "usv_state" or "uav_state".
2 t Current vehicle-execution time (seconds since start).

3 x X location (meters) of the vehicle in the earth-fixed coordinate
frame.

4 y Y location (meters) of the vehicle in the earth-fixed coordinate
frame.

5 z Z location (meters) of the vehicle in the earth-fixed coordinate
frame.

6 φ Bank Euler angle (degrees). Rotation about the X axis.
7 θ Pitch Euler angle (degrees). Rotation about the Y axis.
8 ψ Yaw Euler angle (degrees). Rotation about the Z axis.

9 u Linear velocity (meters per second) along the body-fixed
coordinate frame X axis.

10 v Linear velocity (meters per second) along the body-fixed
coordinate frame Y axis.

11 w Linear velocity (meters per second) along the body-fixed
coordinate frame Z axis.

12 p Angular velocity (degrees per second) about the body-fixed
coordinate frame X axis.

13 q Angular velocity (degrees per second) about the body-fixed
coordinate frame Y axis.

14 r Angular velocity (degrees per second) about the body-fixed
coordinate frame Z axis.

Table 8.1. Autonomous and Unmanned Vehicle Workbench (AUVW) Physically-Based
Model Telemetry String Fields Common to all Vehicle Types

2. Physically-Based AUVW Models
Vehicle-type-specific models in the AUVW rely on rigid-body dynamics,

Newton-Euler equations, and numerical integration (McGhee, et al., 00). UUV and UAV

models are rigorously defined and allow for accurate six-degree-of-freedom modeling of

vehicle response. The USV model, on the other hand, provides only two-degree-of-

freedom response, making a more accurate USV model, as well as a UGV model,

candidates for future AUVW improvements.

A variation of the model described in (Brutzman, 94) is used for UUV modeling

in the AUVW. The equations of motion and coefficients of the model correlate directly

to the characteristics of the vehicle body and control effectors. The model’s relationship

between propeller revolutions per minute and forward speed, however, is modified to

more accurately reflect actual vehicle response. Rather than the linear speed-per-

220

revolutions-per-minute coefficient of the original model, three reference speeds

(corresponding to 0, 50, and 100 percent of available revolutions per minute) are used to

derive a quadratic curve that correlates any revolutions per minute value between 0 and

100 percent to a specific forward speed through the water. All other equations of motion

of the UUV model are identical to those documented in (Brutzman, 94).

The model’s coefficient values are adjusted as required to accurately model

various vehicles. Values used during the tests documented in this chapter model the

response of the ARIES UUV and are identical to those of (Brutzman, 94) with two

notable exceptions. The ARIES propeller revolutions-per-minute-to-forward speed

relationship is based on speeds of 0.0, 1.6, and 1.7 meters per second for 0, 50, and 100

percent of available revolutions per minute respectively. Additionally, since the ARIES

UUV does not utilize cross-body thrusters, the values of all coefficients relating to their

influence on vehicle response are set to zero.

Providing for only a two-degree-of-freedom response (surge and yaw), the USV

model is the most rudimentary of the vehicle-type-specific models currently implemented

in the AUVW. Although the model’s simplicity effectively precludes its use in testing

vehicle response, it does provide a useful tool for evaluating overall mission flow and the

progress of a declarative agenda’s goals, and is therefore suitable for the types of

experiments required to validate the functionality of the ERBM controller.

The model consists of Equations 8.1 and 8.2 where umax is the vehicle’s maximum

forward speed, rmax is the vehicle’s maximum turn rate, rpm is the current propeller

revolutions per minute setting (or average for multi-propeller vehicles), rpmmax is the

maximum commandable propeller revolutions per minute, δrudder is the current rudder

deflection (degrees), and δrudderMax is the maximum allowable rudder deflection. These

equations are used to compute linear acceleration along the vehicle’s body-fixed X axis

and angular acceleration about the body-fixed Z axis respectively. Results documented

in this chapter use coefficients intended to represent a typical medium-speed USV.

Maximum speed (umax) was 15.0 meters per second, maximum turn rate (rmax) was 0.3

radians per second, maximum revolutions per minute (rpmmax) was 1000 and maximum

221

rudder deflection (δrudderMax) was 30 degrees. As with other AUVW models, values can

be adjusted as required to approximate the response of various vehicles.

 0.2 max

max

rpm uu u
rpm

⎛ ⎞⋅
= ⋅ −⎜ ⎟

⎝ ⎠
 (Eq. 8.1)

 0.33 rudder

max rudderMax

u u
r r

uu
δ

δ
−⎛ ⎞

= ⋅ −⎜ ⎟
⎝ ⎠

 (Eq. 8.2)

The UAV model is based on aerodynamic stability derivatives (Stevens and

Lewis, 03) and the equations of motion defined in (Cooke, et al., 92). Coefficient values

and descriptions are provided in Tables 8.2 through 8.5. As with other AUVW models,

UAV coefficients can be manipulated to model the response of other vehicles as required.

Coefficient Value Description
S 12.985 Wing planform area (square meters).
b 14.84 Wingspan (meters).
c 0.875 Average wing chord width (meters).
ε (-4.5, 0.0, 0.0) Tail position in the body-fixed coordinate frame (meters).
m 775 Vehicle mass (kilograms).
Ixx 9819.59 Inertia tensor xx element.

Iyy 7076.06 Inertia tensor yy element.

Izz 16627.7 Inertia tensor zz element.

Ixy, Ixz, Iyz 0.0 Inertia tensor xy, xz, and yz elements.

Table 8.2. UAV Physically-Based Model Vehicle Characteristics

Coefficient Value Description

CL0 0.3322 Reference lift at 0o angle of attack.

CD0 1.772e-2 Reference drag at 0o angle of attack.

CLα 7.556 Lift curve slope.

CDα 8.372e-2 Drag curve slope.

CM0 6.718e-2 Reference pitch moment at 0o angle of attack.

CMα -3.6 Pitch moment due to angle of attack.

CLQ 0.0 Lift due to pitch rate.

CMQ 0.0 Pitch moment due to pitch rate

CLαDot 0.3587 Lift due to angle of attack rate.

CMαDot -3.771 Pitch moment due to angle of attack rate.

Table 8.3. UAV Physically-Based Model Longitudinal Coefficients

222

Coefficient Value Description

CYβ -0.4032 Side force due to side slip.

CLβ -0.15 Dihedral effect.

CLP -9.1286 Roll damping.

CLR 0.3599 Roll due to yaw rate.

CNβ 1.4556 Weather-cocking stability.

CNP -0.3815 Rudder adverse yaw.

CNR -0.8904 Yaw damping.

Table 8.4. UAV Physically-Based Model Lateral Coefficients

Coefficient Value Description

CLδe 1.229e-2 Lift due to elevator or horizontal stabilator.

CDδe 6.375e-5 Drag due to elevator or horizontal stabilator

CMδe -6.361e-2 Pitching moment due to elevator or horizontal stabilator.

CLδa 5.35e-3 Rolling moment due to aileron.

CNδa 0.0 Yawing moment due to aileron.

CYδr 2.663e-4 Side force due to rudder.

CLδr -8.8738e-4 Rolling moment due to rudder.

CNδr -1.049e-2 Yawing moment due to rudder.

Table 8.5. UAV Physically-Based Model Control Coefficients

Although no attempt is made to model the aerodynamic characteristics of an

actual vehicle with absolute accuracy, the coefficient values approximate the response of

a UAV along the lines of the RQ-1 Predator (Figure 8.1). The coefficient values of

Tables 8.2 through 8.5 were derived through testing with a second UAV model based on

the summed effects of airfoil sections as described in (Bourg, 02). Airfoil characteristics

were obtained from the National Advisory Committee for Aeronautics airfoil tables

found in (Abbott and Von Doenhoff, 59). Individual airfoils were chosen and composed

in such a way as to reflect the approximate shape and characteristics of the wings, body,

and control surfaces of the Predator UAV.

At present, the AUVW does not implement a UGV model, although one will be

developed and implemented when required. Thus, this work does not directly address the

application of the common data model or the ERBM controller to UGVs. It is, however,

223

assumed that UGV applicability will ultimately prove similar in principle to the UUV,

USV, and UAV results discussed here.

Figure 8.1. The RQ-1 Predator UAV

C. EXPERIMENTAL RESULTS

1. AVCL Translations

A number of task-level behavior scripts and vehicle-specific missions were used

to verify the ability to translate between data formats using XSLT and context-free

grammars. Vehicle availability, however, allowed for in-vehicle testing with the ARIES

UUV only. Correctness of the translations to and from the Phoenix UUV tasking

language was verified using the AUVW, which is capable of simulating missions defined

in either AVCL or the Phoenix command format. The correctness of the translations for

REMUS, Seahorse, and JAUS systems was confirmed using the command-format

definitions of (Hydroid, 01), (NAVO, 04), and (JAUS, 04-4) respectively.

In general, both translations from AVCL to vehicle-specific formats and the

reverse translations work as described in Chapter V. A number of observations bear

mentioning, however. The first is that the same AVCL task-level behavior might be

implemented differently by different vehicles. The AVCL UUV waypoint behavior of

Figure 8.2, for instance, specifies transit speed as a percentage of maximum available

power. Translation for the Seahorse UUV yields the command depicted in Figure 8.3

224

which specifies transit speed in knots. On the other hand, the REMUS command of

Figure 8.4 relies on an open-loop revolutions per minute. Similarly, an ARIES waypoint

specifies transit speed as an open-loop voltage to the propeller motors. Ultimately, these

three vehicles will use three different transit speeds to execute the same waypoint

behavior.

Figure 8.2. An AVCL UUV Waypoint Behavior

Figure 8.3. Translation of the AVCL Behavior of Figure 8.2 for the Seahorse UUV

A second observation is that round-trip translation (i.e., from AVCL to a vehicle

specific format and back to AVCL) does not yield an identical result to the original

document. Translation of the Seahorse command of Figure 8.3, for instance, results in

separate AVCL behaviors for speed and altitude. Additionally, the AVCL result uses the

latitude / longitude position and speed in knots of the Seahorse command rather than the

Cartesian coordinates and power setting of the original behavior. This does not pose a

significant issue in this case because the original and post-round-trip translation behavior

sequences are identically translated for the Seahorse UUV.

 <Waypoint>
 <XYPosition x="12700" y="6420"/>
 <Altitude value="4"/>
 <SetPower>
 <AllPropellers value="50"/>
 </SetPower>
 <TimeOut value="500"/>
 </Waypoint>

 Start_Order : Waypoint_Navigation_Order
 Scheduling_Info_Is_Timed : False
 Destination_Latitude : 36.716664597583815 Degrees
 Destination_Longitude : -121.81779490517175 Degrees
 Transit_Mode : Steer_to_Line
 Transit_Altitude : 4.0 Meters
 Transit_Speed_In_Water : 3.5 Knots
 Use_SSS : True

225

Similarly, since MetaCommand behaviors that do not apply to a given vehicle are

ignored during translation, their content can be lost over the course of multiple

translations. A REMUS WaitRun objective is easily incorporated into an AVCL task-

level behavior script using a MetaCommand behavior. However, if this script is

subsequently translated for use with the ARIES UUV, the MetaCommand behavior will

be ignored (although a warning might be generated).

Figure 8.4. Translation of the AVCL Behavior of Figure 8.2 for the REMUS UUV

Similarly, since MetaCommand behaviors that do not apply to a given vehicle are

ignored during translation, their content can be lost over the course of multiple

translations. A REMUS WaitRun objective is easily incorporated into an AVCL task-

level behavior script using a MetaCommand behavior. However, if this script is

subsequently translated for use with the ARIES UUV, the MetaCommand behavior will

be ignored (although a warning might be generated).

The previous observations highlight a concern when vehicle-specific data is to be

converted to AVCL and then to other vehicle-specific formats (a central premise of this

work). In these cases, care must be taken to ensure accurate translation. A consistent

geographic origin, for instance, is required to exchange position data between the

Seahorse and ARIES UUVs to ensure accurate conversion between positions specified

 [Objective]
 Type=Navigate
 Latitude=36N42.999875855028904'
 Longitude=121W49.067694310305114'
 Offset direction=0
 Offset distance (meters)=0
 Offset Y axis (meters)=0
 Minimum range (m.)=20.0
 Speed=812.5 RPM
 Timeout (seconds)=500.0
 Track ping interval (seconds)=0
 Follow trackline=Yes
 Sidescan range=30
 Depth control mode=altitude
 Altitude=4.0

226

with Cartesian coordinates and those specified with latitude and longitude. Additionally,

open-loop orders can be problematic since they can have different meanings to different

vehicles. The use of closed-loop AVCL behaviors, therefore, are more appropriate in

most circumstances since they are unambiguous.

Though not without potential pitfalls, the successful implementation of automated

translations between AVCL, JAUS, and the command formats of the REMUS, Seahorse,

and ARIES UUVs using XSLT, context-free grammars, and the mappings described in

Chapter V clearly demonstrate the viability of a common autonomous vehicle data model

defined in XML to serve as bridge between various vehicles. Additionally, these

translations provide strong evidence of the suitability of AVCL’s task-level behavior set

(including the implicit behavior initiation and termination criteria) for the tasking and

control of arbitrary vehicles. These capabilities are further demonstrated by ERBM

results described in the next section.

2. ERBM Testing

a. Overview
The ERBM implementation described in Chapter VII was used to control

UUV, USV, and UAV missions. USV and UAV missions were conducted in simulation

using the execution software and physically-based models of the AUVW. Since the

AUVW execution software implements AVCL task-level behaviors directly, translation

to a vehicle-specific format was not exercised in these tests. Thus, testing of the ERBM

controller in this manner does not provide direct evidence of its usefulness with vehicles

that do not directly implement the AVCL task-level behaviors. It does, however,

document the ability of the ERBM controller, associated planning algorithms, and task-

level behaviors to provide high-level control for various vehicle types.

On the other hand, both simulated and in-water UUV tests were conducted

using the existing ARIES control software. In addition to demonstrating the suitability of

the ERBM controller for UUVs, the ARIES experiments directly demonstrate the

implementation of a common-data-model-based multi-layer control architecture on a

non-data-model-compliant vehicle. An important implication of the ARIES experiments,

therefore, is that the ERBM controller is potentially applicable to any vehicle for which a

translation XSLT stylesheet is developed.

227

At the time of this writing, neither the AUVW vehicle-control software

nor the ARIES UUV implement target classification or event detection that can provide

the ERBM controller information to fully exercise the finite state machine control. For

this reason, events were artificially generated in order to force the controller to execute

state transitions and replan accordingly. Similarly, the ARIES UUV does not possess

sensors appropriate for MonitorTransmisssions or SampleEnvironment goals. However,

since these goal-types are appropriate for properly equipped ARIES-like vehicles,

missions containing these goal types were conducted in the course of this work. In these

experiments, the existence of notional sensors of the appropriate types was assumed.

b. USV and UAV ERBM Results
Mission results of a typical ERBM-controlled USV mission in the AUVW

simulation are depicted in Figure 8.5. The mission-level state machine (i.e., the

declarative agenda) contained three goals. The first goal directed the point-search of a

circular area for a single target. Following target location, the vehicle was to proceed

north to jam electronic transmissions. If the target was not located, the vehicle was to

proceed to the rectangular patrol area. The agenda called for execution of the Jam goal

upon success of the Patrol goal or mission completion upon failure. The mission was

also to conclude upon success or failure of the Jam goal. Additionally, the declarative

agenda defined three avoid areas.

As indicated in Figure 8.5, the ERBM controller initially directed the

vehicle to the first goal’s search area, bypassing the circular avoid area with six

intermediate waypoints approximating a tangential arc. Upon arriving in the operating

area, a sector pattern was commenced in accordance with the decision tree of Figure 6.7

(i.e., point datum and small search area relative to the sensor sweep width). The goal was

unsuccessful since the search pattern completed without locating the search target, so the

vehicle began execution of the Patrol goal. A parallel-track pattern was dictated because

of the area’s rectangular shape and the implicit Patrol goal requirement for an area-

focused pattern. In the depicted mission, the pattern was completed prior to the end of

the patrol period, so the ERBM controller planned and initiated a second pattern, which

was interrupted prior to completion at the end of the patrol period (goal successful). The

ERBM controller then directed the vehicle to the Jam goal operating area (bypassing the

228

polygonal avoid area). Following successful completion of the Jam goal (correct jammer

operation was assumed), the vehicle proceeded to the designated recovery point.

Figure 8.5. Simulated Mission Results for an ERBM-Controlled USV Executing a

Declarative AVCL Agenda with Three Goals and Three Avoid Areas

Similar results were obtained for simulated ERBM-controlled UAV

missions as indicated by Figure 8.6. The agenda corresponding to the depicted mission

summary included a point-focused search, a SampleEnvironment goal, an IlluminateArea

goal and three avoid areas. The mission-level finite state machine called for the goals to

be executed in order upon success and for the mission to conclude upon the successful

completion of the IlluminateArea goal or upon the failure of any of the three goals.

Upon commencing the mission, the ERBM controller directed the vehicle

to the first operating area and commenced the expanding square search pattern indicated

for a point-focused search of a circular area. After locating the target in the eastern

portion of the area, the vehicle proceeded to the SampleEnvironment goal’s operating

area. The ERBM controller directed a parallel-track pattern appropriate for

environmental sampling over a rectangular area and the pattern was completed in the

allotted time meeting the criteria for successful goal completion. The vehicle then

229

proceeded to the IlluminateArea goal’s operating area and orbited for the duration of the

illumination period before proceeding to the recovery point. As with operation of the

jammer in the previous example, correct operation of the illuminator was assumed.

Figure 8.6. Simulated Mission Results for an ERBM-Controlled UAV Executing a

Declarative AVCL Agenda with Three Goals and Three Avoid Areas

c. UUV ERBM Results
Because it provides an on-vehicle example of common autonomous

vehicle data model application, testing of the ERBM implementation on the ARIES UUV

was more comprehensive than with other vehicle types. Initial experiments were

conducted to demonstrate ERBM control in the execution of single-goal AVCL agendas

with minimal planning requirements. Following the success of these experiments,

increasingly complex agendas were attempted, culminating in missions containing

multiple goals, multiple avoid areas, and more robust mission-level state machines.

When practical, both real-world and virtual environment test missions were conducted.

Both simulated and real-world experiments were conducted in real-time using ARIES’

existing control software and the ERBM implementation described in Chapter VII.

230

The first ARIES ERBM test consisted of the simulated and in-water

execution of an AVCL agenda with a single Reposition goal and no avoid areas. Possibly

the most straight-forward AVCL goal type, the Reposition goal simply calls for the

vehicle to transit from its current position to a new location. Optional intermediate points

can be included in the goal specification to dictate transit routing. The Reposition goal of

the experimental mission included five intermediate waypoints that directed the vehicle

first to the north and then to the south prior to proceeding to the recovery point.

Summaries of the virtual environment and in-water results are provided in Figures 8.7

and 8.8 respectively. As the figures indicate, the agenda was executed as desired with the

vehicle transiting from the launch point to the recovery point while visiting each of the

intermediate waypoints. Variations between the simulated and in-water track can be

attributed to perturbations of the real-world environment, imperfect in-water navigation,

differing vehicle launch headings, and the experimentation with different steering

equations. While not requiring deliberative planning or decision-making, this simple

experiment does demonstrate the use of automated AVCL task-level-behavior

translations as part of the ERBM implementation on a non-AVCL vehicle.

Figure 8.7. ARIES UUV Virtual Environment Results for an ERBM-Controlled Mission

with a Single Reposition Goal and No Avoid Areas

231

Figure 8.8. ARIES UUV In-Water Results from Monterey Bay (16 June 2006) of the

Reposition Mission of Figure 8.7

Extending upon the success of the preceding experiment, a more complex

Reposition goal was attempted in the AUVW (no in-water test was attempted because of

a desire to focus limited in-water experimentation on more complex agendas). Including

multiple avoid areas but specifying only two intermediate transit points, successful

execution of this mission required the ERBM path planner to generate, translate, and

issue intermediate waypoints to bypass the avoid areas while utilizing the designated

routing points. The simulation results depicted in Figure 8.9 indicate that the ERBM

controller did exhibit this capability with a total of nine intermediate waypoints being

generated (in addition to those specified in the agenda) using the algorithm described in

Chapter VI. Thus, the ERBM implementation provides a high-level path-planning

capability not inherently available with predefined ARIES waypoint lists. This capability

is implicitly exercised in the execution of more complex agendas when transiting to and

from the operating areas for various goals.

232

Figure 8.9. ARIES UUV Virtual Environment Results for an ERBM-Controlled Mission

with a Single Reposition Goal and Multiple Avoid Areas

Although still not calling for significant goal-achievement planning, a

MonitorTransmissions goal does call for more robust implementation than a Reposition

goal because it ultimately relies on a Loiter behavior to maintain position in the center of

the operating area. Since ARIES waypoint lists do not provide for station-keeping,

translation of the Loiter behavior utilizes multiple waypoints that maintain the assigned

position. Additionally, waypoints must be recalculated and reissued for the duration of

the monitoring period and the pattern must be interrupted when the period ends

regardless of the status of the currently ordered waypoints.

Summarized results for virtual environment ERBM-controlled ARIES

missions with a single MonitorTransmissions goal are provided in Figures 8.10. In the

depicted mission, the ERBM controller directed the vehicle around a circular avoid area

to the center of the rectangular operating area. Upon reaching the operating area, the

vehicle proceeded to a depth of one meter (ARIES does not possess a bottom-mounted

rudder and cannot effectively maneuver on the surface), slowed to conserve power, and

233

commenced a pattern of four waypoints arranged in a 30 meter square. Since the pattern

was completed prior to the end of the monitor period, the controller reissued the loiter

pattern waypoints multiple times. However, the final pattern was not completed prior to

the end of the monitor period (the vehicle was transiting from the first to the second

waypoint in the pattern), so the final sequence was interrupted and the vehicle was

directed to the agenda-defined recovery position. As of the time of this writing, no

corresponding in-water experiment has been conducted.

Figure 8.10. ARIES UUV Simulation Results for an ERBM-Controlled Mission with a

Single MonitorTransmissions Goal and a Single Avoid Area

Remaining goal types for which in-water or virtual environment

experiments were conducted—Search, Patrol, and SampleEnvironment—rely on search

patterns generated according to the decision tree of Figure 6.7 to provide for uniform

coverage of the operating area. Figures 8.11 and 8.12 provide summaries for virtual

environment and in-water runs of an area-search mission with the potential for multiple

targets. In both cases, the controller directed the vehicle around the circular avoid area

and commenced a parallel-track search of the rectangular operating area. Location of the

search target on the second leg of the pattern met part of the criteria for goal success.

However since the goal specification indicates the potential for multiple targets, the

234

pattern was allowed to complete without interruption. Following completion, the

controller directed the vehicle to the recovery point, again bypassing the depicted avoid

area. Differences between virtual environment and in-water results are due to slightly

different launch and recovery positions, navigation adjustments following the into-area

and out-of-area GPS fixes of the in-water run (depicted in Figure 8.12), and noticeably

less responsive left-turn performance at the end of the second search-pattern leg.

Anomalies notwithstanding, the ERBM controller performed as advertised and directed

the vehicle into and out of the operating area while bypassing the depicted avoid area and

commanded a predictable and effective search pattern.

Figure 8.11. ARIES UUV Simulated Results for an ERBM-Controlled Mission with a

Single Area-Search Goal with Potentially Multiple Targets

235

Figure 8.12. ARIES UUV In-Water Results from Monterey Bay (25 July 2006) of the

Multi-Target Area-Search Mission of Figure 8.12

Figures 8.13 and 8.14 depict virtual environment and in-water mission

summaries for a single-target search of the same operating area as the multi-target search

depicted in Figures 8.11 and 8.12. As with the multi-target search, the ERBM controller

directed the vehicle into and out of the operating area while bypassing the depicted avoid

area. Once in the area, the decision tree called for the same parallel track pattern used in

the multi-target search. However, in this case, the goal was immediately considered

successful upon location of the target, so the pattern was interrupted and the vehicle

proceeded to the recovery point. As in the multi-target search example, differences

between the virtual environment and in-water can be attributed to slightly different

launch positions and navigation adjustment following GPS fixes during the in-water run

depicted in Figure 8.14. These differences, however, do not relate to the ERBM

controller and do not effect the assessment of its performance. Thus, these examples

provide a suitable demonstration of the ability of the ERBM finite-state-machine-based

controller to react to changes in current goal status while directing overall mission flow.

As in the multi-target example, the ERBM controller performed effectively both in

simulation and in the real-world experiment.

236

Figure 8.13. ARIES UUV Simulated Results for an ERBM-Controlled Mission with a

Single Area-Search Goal for a Single Target

Figure 8.14. ARIES UUV In-Water Results from Monterey Bay (25 July 2006) of the

Single-Target Area-Search Mission of Figure 8.14

237

Experiments with multiple-goal agendas were conducted only in

simulation because of the extended mission run-times. All documented examples utilized

the same mission which consisted of three goals and a single avoid area. The mission

first called for a single-target area-search. If the target was located, the vehicle was to

patrol a polygonal operating area. If the search failed to locate the target, the vehicle was

to proceed to a circular operating area for a MonitorTransmissions goal. Success or

failure of the MonitorTransmissions or Patrol goal indicated mission completion.

In the experiment depicted in Figure 8.15, the vehicle was directed to the

search area and commenced a parallel-track pattern. Following the location of the search

target on the second leg of the search (goal successful), the vehicle proceeded to the

patrol area. The irregular shape of the area dictated a traveling-salesman-problem-based

search pattern generated using the simulated annealing algorithm described in Chapter

VI. The pattern was completed before the patrol period ended, so a second pattern was

generated and commenced. However, the patrol period ended (meeting the criteria for

goal success) shortly after the second pattern was begun. Thus, the pattern was

interrupted and the vehicle transitioned to the designated recovery point.

Figure 8.15. ARIES UUV Simulated Results for an ERBM-Controlled Mission with a

Successfully Executed Area-Search and Patrol Goals

238

As with the preceding example, the mission summarized in Figure 8.16

began with a parallel-track search of the rectangular search area. However, in this

instance the search target was not located, so the area-search goal was unsuccessful. The

vehicle then transitioned to the operating area of the MonitorTransmissions goal. Upon

arrival in the area, the ERBM controller directed the vehicle to slow, change depth to one

meter, and loiter near the center of the operating area for the duration of the monitoring

period (again, translated for ARIES as a 30-meter square waypoint pattern. Upon goal

success (i.e., the end of the monitoring period), the vehicle was directed to the designated

recovery position.

Figure 8.16. ARIES UUV Simulated Results for an ERBM-Controlled Mission with an

Unsuccessful Area-Search Goal and a Successful MonitorTransmissions Goal

The successful execution of these multi-goal agendas provides a

demonstration of ERBM control as the vehicle progresses through the mission-level state

machine. Both goal-success and goal-failure transitions were executed and the vehicle

was controlled in accordance with the mission definition in both cases.

D. SUMMARY
Only limited experimentation specifically focused on translations between AVCL

and vehicle-specific data formats is documented in this chapter. However, the techniques

239

and data mappings described in Chapter V did prove sufficient for all tests, particularly if

the use of potentially ambiguous open-loop behaviors was avoided and care was taken to

ensure geographic origin consistency over the course of multiple translations.

Additionally, translation from AVCL to a vehicle-specific format is an inherent aspect of

on-vehicle ERBM implementation, so successful ERBM experimentation with actual

vehicles implicitly demonstrates this capability.

The suitability of the ERBM control architecture for UAV and USV control was

demonstrated in simulation using AUVW physically-based models and vehicle-control

software. Experiments with the ARIES UUV, on the other hand, provide an on-vehicle

exemplar indicative of the broader applicability of the ERBM architecture and its

underpinning common autonomous vehicle data model.

ERBM experiments included missions containing AVCL Reposition, Search,

Patrol, MonitorTransmissions, and SampleEnvironment goals. Of the remaining goal

types, the vehicle-rendezvous implementation of (Nicholson, 04) demonstrates the

viability of high-level Rendezvous goal control using an architecture along the lines of

the ERBM. In fact, the (Nicholson, 04) control architecture characteristics are heavily

leveraged in the overall ERBM design and provided a conceptual starting point for much

of the work documented in Chapter VII. Jam and IlluminateArea goals are not typical of

the types of goals likely to be required of a vehicle along the lines of the ARIES UUV, so

on-vehicle experiments were not conducted for these goal types. They are potentially

applicable to UAVs and USVs and tests have been run for these goal types using the

AUVW. In the conduct of these missions, appropriate mission-system operation (i.e.,

jammer or illuminator) was assumed since these systems cannot be explicitly controlled

using the existing AVCL task-level behavior set. Finally, the Attack, Decontaminate,

Demolish, and MarkTarget goal types require a level of mission-system control not

currently available in AVCL’s task-level behavior set. Verification of the finite-state-

machine-based control of these goal-types, therefore, remains an area for future work.

240

THIS PAGE INTENTIONALLY LEFT BLANK

241

IX. CONCLUSIONS AND RECOMMENDATIONS

A. RESEARCH CONCLUSIONS
The overarching hypothesis explored in this work is that despite their apparent

differences, autonomous vehicles of a particular type have enough similarities to facilitate

the development of a common data model capable of expressing tasking, messaging, and

mission results for arbitrary vehicles. Further it is surmised that this data model can be

directly applied to actual vehicles in a variety of ways that potentially improve

interoperability and foster the development of vehicle-independent support systems.

Perhaps the most straightforward conclusion to be drawn is that there is enough

commonality between various vehicles to enable the implementation of a single data

model suitable for the representation of arbitrary vehicle tasking, messaging, and mission

results and that XML Schema provides a suitable mechanism for formal definition of this

data model. XML has a number of advantages over bit-mapped binary or non-XML text-

based formats that aide in the definition and use of this common data model including

content governance, content verifiability, readability and platform independence.

Further, XML documents complying with a well-designed XML schema are largely self

documenting making them easier to work with when archiving or analyzing data.

Finally, the ease with which XML can be incorporated into applications facilitates the

development of applications that enforce correctness by abstracting the end user from the

data model’s syntactic and structural requirements.

Of primary importance in the definition of a common autonomous vehicle data

model is the design of an appropriate vehicle tasking mechanism. This work defines a set

of task-level behaviors that prove effective for this purpose. Additionally, the

development of rigorously defined behavior activation and termination criteria proved

important aspects of the task-level behavior definition process. Given an appropriate set

of task-level behaviors and deterministic activation and termination criteria, any vehicle

activity can be unambiguously represented within the constraints of the common data

model. This work makes significant strides towards this end, particularly where vehicle

242

motion is concerned. Not surprisingly, virtually every subsequent aspect of this research

relies upon a well-defined task-level behavior set.

A corollary hypothesis of this work was that it mechanisms can be implemented

to support automated translations between the data model and vehicle-specific data

formats. Thus, a second important result of this work is the development of techniques

for translating between an XML-based data model and vehicle-specific tasking,

messages, and results data. A preliminary requirement to actual translation is the

development of mappings between the common data model and vehicle-specific formats.

By the use of exemplars, this work demonstrates the viability of mapping between

various vehicle-specific data formats and a common autonomous vehicle data model and

identifies a number of issues associated with these mappings and the translations that

they support.

XSLT is the obvious choice for converting data-model compliant data to text-

based formats as indicated by its routine use in this role in a numerous of domains.

However the use of XSLT extensions, development of a simulated XSLT mutable

variable pattern, and the addition of a MetaCommand behavior to the task-level behavior

set was required to support these translations. Although XSLT was quickly ruled out as a

potential mechanism for the translation of vehicle-specific text into model-compliant

XML the use of context-free grammars as translation mechanism has been explored in

other contexts (e.g., natural language parsing). Their use in translating vehicle-specific

data to model-compliant XML format proved a natural extension of this application.

Similarly, the usefulness of XML encodings of a binary formats is becoming increasingly

common. Two examples are provided by the development of XML encodings for the

Distributed Interactive Simulation (DIS) protocol (McGregor, et al., 06) and JAUS

messages (JAUS, 06). However, these other efforts utilize the XML encodings as a

convenient form for working with the binary data rather than as an intermediate form

supporting ultimate translation using XSLT making the application explored in this work

noteworthy.

The development of a declarative means of task-specification within the data

model results from a desire to provide a more abstract and intuitive method of mission

243

definition than is provided by scripting. The success of a task-specification mechanism

of this sort is implicitly based on the hypothesis that these declarative missions can be

effectively converted into task-level behavior scripts. Previous work with layered control

architectures suggests methods similar to those explored in this work for generating

increasingly detailed command sequences at lower layers of the architecture. However,

the goals of an AVCL declarative mission are more abstract in nature than those of

typical layered architectures, making the task of generating task-level behavior sequences

from AVCL goals more difficult. In particular, the use of search and planning

algorithms, most notably as the simulated-annealed traveling salesman problem

algorithm, to generate area-coverage patterns (i.e., search patterns) is significant.

On its face, the inference of declarative goals from task-level behavior sequences

might not seem a requirement for successful application of a common autonomous

vehicle data model. This form of translation is, however, required in order to meet the

goal of interchangeability of any tasking form and facilitates integration of the common

data model into broader command and control systems for which typical autonomous

vehicle script-level command is not always meaningful. Based upon the premise that

scripts that are intended to accomplish certain types of goals are potentially identifiable

by identifiable characteristics, the work here concerning the inference of intent from task-

level behavior scripts is fairly unique. Nevertheless, it is ultimately a requirement for the

effective use of the common data model beyond the domain of autonomous vehicle

operations. Relying on the identification of suitable characteristics as well as the

implementation of an actual script-classification mechanism, the case-based reasoning

and naïve Bayes classification systems developed in the course of this work provide an

initial capability. Although surprisingly successful in their current form, they are

considered a starting point for future work in this area.

When combined, the translation mechanisms discussed in the preceding

paragraphs demonstrate the general interchangeability of vehicle tasking types. As

indicated in Figure 9.1, vehicle tasking in any form, whether vehicle-specific or

constrained by the data model, is potentially convertible to any other form.

244

Figure 9.1. Mechanisms Supporting Autonomous Vehicle Tasking Form

Interchangeability and Automated Translation between Forms

A final hypothesis explored in this research is based on the observation that

generation of task-level behavior scripts for accomplishing declarative goals is

conceptually similar to the goal decomposition occurring at the upper levels of a multi-

layer vehicle-control architecture. It might be possible, therefore, to implement a multi-

layer control architecture around this functionality. Further, the ability to generate

vehicle-specific commands from task-level behaviors implies that this architecture can be

designed to augment a vehicle’s existing controller. The result of exploration and

experimentation with this hypothesis is the ERBM control architecture.

Although similar in purpose, the common-data-model-based ERBM differs from

other vehicle-independent command efforts in implementation. Developmental vehicle-

independent command languages typically rely on target vehicle implementation of the

common format (e.g., C2L) or programmatic generation of vehicle-specific commands

using undisclosed mechanisms (e.g., CCL). The ERBM avoids these potentially

cumbersome requirements by making vehicle-specific command generation a function of

the controller itself and leveraging the translation mechanisms developed in the course of

245

this work to generate suitable command sequences that accomplish high-level goals.

This facilitates on-vehicle implementation by minimizing required modification of

existing vehicle control software. Thus, the ERBM implementation explored here is

noteworthy in its method of realizing vehicle-independence.

B. RECOMMENDATIONS FOR FUTURE WORK
Overall, this research successfully addresses the objectives defined in Chapter I.

However, as is typically the case with research of this sort, much remains to be

accomplished before this work can be effectively applied to operational systems.

Additionally, the concepts explored here might be improved, augmented, or extended in a

number of ways to broaden their applicability.

An obvious potential addition to this work involves the application of these

concepts to more actual vehicles. The mappings and translations between AVCL and

JAUS messages, REMUS objectives, Seahorse commands and Phoenix behaviors are

correct according to the available references. They have not, however, been tested in an

operational environment with actual vehicle software. Experiments of this sort will

further verify the assertions of this work across a broader spectrum.

In a similar vein, a potential extension of the task-level behavior set to more fully

meet the requirements of UGVs, USVs, and UAVs merits attention. With the exception

of the JAUS message set, all of the data formats experimented with in this research apply

only to UUVs. A rigorous analysis of existing command and message formats for other

vehicle types will facilitate the development and implementation of behaviors appropriate

for these types of vehicle and enable the use of a common autonomous vehicle data

model with a broader array of vehicle types. Ultimately, a task-level behavior extension

of this sort will be required before the data model will provide for true compatibility

between both dissimilar vehicles of the same type and vehicles of different types.

As discussed briefly in Chapter VI, the task-level behavior set developed in this

work does not provide for control of mission systems, payloads or manipulators. Clearly,

this limits the types of vehicle activities that can be controlled. From the standpoint of

the common data model, five types of declarative goals cannot be explicitly converted to

task-level behaviors at all and the specific objectives of the remaining types (e.g.,

246

frequencies of interest for a MonitorTransmissions goal) require the use of

MetaCommand behaviors that may or may not be translatable to vehicle-specific

commands. Thus, the development of a broadly applicable mission-system interface

might be the most important requirement for full realization of the potential of a common

autonomous vehicle data model. This is especially true of the high-level planning and

control applications of Chapters VI and VII. Fortunately, an interface of this sort is also a

priority of a number of other robotics development efforts and early results are already

becoming available. The JAUS message set, for instance, includes commands for

manipulating jointed manipulators and video devices (JAUS, 04-3) and a U.S. Navy-

sponsored effort is expected to release a UUV-payload interface standard later this year

(ASTM, 06). Regardless of which standards are ultimately accepted, incorporation of

their functionality into the data model’s task-level behavior set will allow for more

explicit vehicle control. Further, this increased level of control will be available whether

vehicle activity is directed by a predefined task-level behavior script or those scripts are

generated by the upper layers of a hybrid control architecture (i.e., ERBM).

The ERBM controller and the planning algorithms upon which it relies also

provide a number of potential areas for future work. The search planning algorithms

described in Chapter VI, for instance, are implemented to develop a single-vehicle,

single-pass pattern. That is, the waypoints making up the pattern direct a single vehicle

to cover the objective area exactly once. Since support of multi-vehicle operations is a

design objective of the common autonomous vehicle data model, it stands to reason that

multi-vehicle planning algorithms should be an inherent part of a high-level controller

based on the data model. A planner of this sort might divide the area into subsections

with a different vehicle assigned to each, or it might plan whole-area search patterns for

all participating vehicles.

Similarly, even single-vehicle searches might benefit from the development of

plans that prescribe multiple passes over the search area (possibly at different depths or

altitudes for UUV or UAV searches). Using Equation 6.1, a search track-spacing of

1.333 times the sensor-sweep width is required to obtain a probability of detection of 0.75

for a single pattern search while a track-spacing of 4.0 times the sensor-sweep width will

only provide a probability of detection of 0.5. However, based on the combinatorial

247

mathematics inclusion-exclusion principle (Mendenhall, et al., 01), two searches of an

area, each with a probability of detection of 0.5 will also provide an overall probability of

detection of 0.75. This raises the possibility that a widely spaced multi-pass search might

provide for the same probability of detection as narrowly spaced single-pass search with

a shorter overall travel-distance.

Among the richest potential areas for future work relating to this research is the

ERBM Tactical level. Since implementation efforts documented in this dissertation

focused on Strategic-level planning and task-level behavior translation for issue to the

Execution level (i.e., the existing vehicle control system), there is ample opportunity for

improvement at the ERBM Tactical level. Many more general autonomous vehicle

research efforts that seemingly fall outside the scope of the common data model are

potentially applicable at the ERBM Tactical level. For instance, object detection and

classification, localized path planning and obstacle avoidance, feature-based navigation,

simultaneous localization and mapping, and onboard systems monitoring and associated

fault detection and response are all appropriately implemented at the Tactical level as

described in Chapter VII. A corollary requirement brought about by the implementation

of these and other Tactical-level capabilities will be the development of supporting inter-

level messages (in addition to those of listed in Table 7.3) to take advantage of new

functionality. Ultimately, adding ERBM Tactical-level capabilities will facilitate the

evolution of the Strategic level goal-specific finite state machines and replanning

capabilities.

At least two potential areas for future work relating to script-intent inference (i.e.,

assigning an appropriate declarative goal to a task-level behavior sequence) are easily

identified. The results documented in Chapter VI for both the case-based reasoning and

naïve Bayes classifiers are encouraging. However, a more in-depth study of the

relationship of various script characteristics to the declarative goal types, utilization of a

larger recall set, and exploration of other machine learning techniques might provide still

better results. In particular, the relatively low PointSearch recall (i.e., the proportion of

PointSearch scripts that were identified as such) for both planners provides room for

improvement.

248

Additionally, the performance comparison between the case-based reasoning and

naïve Bayes systems clearly indicates that the performance of both systems are more

accurate in identifying certain types of missions than others. The performance of both

systems might benefit from analysis of receiver operating characteristics curves

(Montgomery and Runger, 03) correlating to a Boolean identification for each goal type.

Using the case-based reasoning distance metric or computed naïve Bayes a posteriori

probabilities, the rates of true and false positives and negatives can be determined as a

function of a minimum classification threshold for each goal type. The ultimate

classification, then, can be based on the curve for which a false positive is least likely

given the actual distance or computed probability. This classification may or may not be

the same as would be made based solely on the minimum distance or maximum a

posteriori probability. Receiver operating characteristic curves might also be used to

determining a maximum acceptable distance or minimum probability for each goal type

(based on the resultant false positive rate) if it is determined that it is more desirable to

fail to classify a mission than to assign it an incorrect classification.

Although all specific objectives of this research have been addressed, the use of

the common data model to directly support coordinated operations is not directly

demonstrated. Rather, the assumption is made that if message data can be translated

between vehicle-specific formats using the common data model, vehicles will be able to

interpret and respond to messages from other vehicles. Demonstration of this capability

using actual or simulated vehicles is the obvious next step. If the ERBM is used to

provide high-level control for all participating vehicles, data model facilitation of

coordinated operations is obvious since inter-vehicle communications is implemented at

data-model-dependent Tactical and Strategic levels. In this case, translation of AVCL

messages to vehicle-specific formats is not required and the ERBM controllers can

potentially provide for coordinated operations even among vehicles that are not designed

to operate as part of a multi-vehicle system. In cases where the ERBM controller is not

used, but the participating vehicles possess inter-vehicle communications capability,

translations between the native formats will be required to achieve any level of

autonomous coordination.

249

A further question remains to be addressed for any multi-vehicle system requiring

translation between vehicle-specific message formats (i.e., a system in which one or more

participating vehicles does not implement the data model directly). That is, where are the

data format translations most appropriately conducted? A first possibility is to require all

transmitting vehicles to convert messages to the destination vehicle’s native message

format prior to transmission (i.e., translation occurs on the transmitting vehicle). A

second possibility is to allow transmitting vehicles to send messages using their own

native format. Receiving vehicles might then be required to translate the message to their

own native format upon receipt (i.e., translation occurs on the receiving vehicle). A final

possibility is to allow transmitting vehicles to send messages using their own native

format and using an intermediate server to translate and retransmit the message in the

destination vehicle’s message format (i.e., translation and retransmission occurs on an

intermediate server). Additionally, the use of these methods might be combined and

tailored to the capabilities of the individual vehicles. Each of these potential translation

paradigms has potential advantages and disadvantages, so study and experimentation

with various configurations and operating environments is warranted.

A peripheral follow-on to this research might involve the actual incorporation of

the common data model into a larger command and control system. Alluded to in a

number of contexts thus far, this capability is a requirement for the effective integration

of autonomous vehicles into larger scale operations. This task is potentially simplified by

the fact that the declarative goal-types available in AVCL are intentionally aligned with

the JC3IEDM Action-Tasks considered most appropriate for autonomous vehicle

execution. Incorporation of AVCL data into a JC3IEDM system will require the

translation of data-model documents into business objects implemented by the JC3IEDM

system and vice versa. Since business objects typically take the form of XML

documents, XSLT stylesheets based on data mappings similar to those described in

Chapter V are the most appropriate mechanisms for conducting both of the required

translation.

Another area of potential related research involves the investigation of data model

use in the design and implementation of autonomous vehicle support system interfaces.

As discussed briefly in Chapter III, the ease with which XML can be processed facilitates

250

the development of applications that effectively distance the end user from the intricacies

of the data model. Given the increasing emphasis on human-computer interaction aspects

of unmanned vehicle systems, this is a potentially important data model application. In

fact, the straightforward realization that end users are likely to possess more mission area

expertise than autonomous vehicle expertise, makes the fielding of intuitive systems for

vehicle programming, monitoring and analysis crucial to the overall success of vehicle

systems in operational environments. The AUVW provides evidence that a vehicle-

independent data model defined as an XML vocabulary can facilitate the development of

support systems that are both operationally robust enough to support mission

requirements and user friendly enough to be utilized by lay operators.

The potential influence of a common data model on the design of user interfaces

for autonomous vehicle programming highlights a more subtle question that bears

exploration—what is the appropriate level of mission-programming capability of an

operational autonomous vehicle support system? Interface simplicity and intuitiveness

notwithstanding, it is probably undesirable to provide a lay user with the completely

unrestricted mission definition capability. In many instances, it might be sufficient to

encode rules within the application to preclude mission-definition errors (e.g., a loop in

the mission-level state machine of a declarative agenda). In other cases, the potential

risks posed by a mission programming error (e.g., vehicle loss or attacking the wrong

target) might justify significant restrictions to the mission-definition process. These

might include the required use of built-in preplanned missions or required verification in

simulation prior to execution in an actual vehicle. Ultimately, a rigorous analysis of the

potential risks associated with expected operations (i.e., operating environment, tasking,

operator expertise, etc.) and available safeguards is required to address this issue.

Finally, as discussed in Chapter IV, even though the data model developed in the

course of this work provides all of the functionality required to meet the objectives of this

research, it is not semantically rich enough to be accurately classified as an ontology.

Given the increasing capabilities demonstrated by ontologies and Semantic Web

applications in other domains, it is possible that a more ontological data model might

provide advantages in this problem area as well. Further exploration of the capabilities of

251

ontologies, Semantic Web applications, and how they might be applied to the

autonomous vehicle domain might prove a fitting extension to this work.

252

THIS PAGE INTENTIONALLY LEFT BLANK

253

APPENDIX A: THE AUTONOMOUS VEHICLE COMMAND
LANGUAGE (AVCL)

A. INTRODUCTION

AVCL is a schema-governed XML vocabulary intended for use in defining

autonomous vehicle tasking, exchanging messages between vehicles, and encoding

vehicle mission results in a meaningful way. This appendix provides a detailed summary

of the AVCL model’s content, structure and semantics. The data model defined by the

AVCL schema has evolved to support the work described here. It is entirely likely that

this evolution will continue as this work proceeds. Thus, the data-model description

provided here applies to AVCL in its current form and may not be equally applicable to

future implementations.

The description begins with a summary of schema-defined simple types (i.e.,

types that are defined as restrictions of existing XML primitive or derived types). This is

immediately followed by a description of schema-defined complex types that are reused

in various places in the schema. After the data-type discussion, the structure and content

of AVCL contents is described beginning with a description of each available document

type (i.e., valid root-level tag) and high-level document structure. Finally, the structure,

content and implied semantics of documents used for mission definition, mission results

encoding, and inter-vehicle messaging is discussed.

Finally, it must be noted that AVCL is a developmental vocabulary. As such a

number of components have not been fully implemented. Additionally, occasional

inconsistencies or undefined elements may be encountered. In general, these pertain to

peripheral or infrequently required elements or portions of the schema associated with

vehicles or operations that were not exhaustively explored in the conduct of this research.

B. SIMPLE DATA TYPES

1. Numerical Data Types

Table A.1 lists and describes numerical types defined in the AVCL. Numerical

data that requires range constraint All numerical data in an AVCL document requiring

constraint beyond that provided by the XML numerical types defined in (W3C, 04-3)

254

uses one of these types. The int, double, and unsignedShort predefined types are also

used extensively within the AVCL schema.

AVCL Type XML Base
Type Range Description

positiveScalarType double >0 Any positive double-precision floating
point value.

nonNegativeScalarType double >= 0 Any non-negative double-precision
floating point value.

positiveIntType int >0 Any positive 32-bit integer.
nonNegativeIntType int >= 0 Any non-negative 32-bit integer.

percentType double [0..100] Indicates a percentage of an
unspecified maximum.

signedPercentType double [-100..100] Indicates a signed percentage of an
unspecified maximum.

calendarDaysType unsignedByte [1..31] Enumeration for the day-of-the-
month portion of a calendar date.

clockHoursType unsignedByte [0..23] Enumeration for the hour portion of a
wall-clock time.

clockMinutesOrSecondsType unsignedByte [0..59] Enumeration for the minute or
second portion of a wall-clock time.

timeZoneType byte [-12..12] Enumeration for a time zone relative
to Greenwich Mean Time .

latitudeType double [-90..90] Any latitude value (positive indicates
northern hemisphere).

longitudeType double [-180..180] Any longitude value (positive
indicates eastern hemisphere).

headingType double (0..360] An orderable vehicle heading
(degrees).

orientationType double (-360..360) An angle (degrees) describing a
vehicle Euler angle.

areaOrientationType double [-90..90]
Represents a rotation angle for a
geographic area (positive indicates
clockwise).

priorityType int [1..255] Value defining a message priority
(lower indicates higher priority).

Table A.1. AVCL Numerical Simple Types.

2. String Enumerations

The AVCL schema defines a number of string-based enumerations. As

mentioned in Chapter IV, defining string types such as these is equivalent to using integer

enumerations. The use of meaningful strings, however, instead of integers makes for

more readable and intuitive documents. A description of available types, their valid

values and their meanings follows.

255

• uuvCapabilityType: describes a capability that a UUV must possess in
order to successfully complete a defined mission. Valid values:

thrusterPowered: vehicle uses propellers to maintain forward speed.
bodyThrustersInstalled: vehicle must possess cross body thrusters that
enable vertical, lateral and rotational motion regardless of forward speed.
hoverCapable: vehicle must be capable of stationary hovering.
altitudeCapable: vehicle must be capable of maintaining a specified
altitude above the bottom.
gpsCapable: vehicle must be capable of GPS navigation.
communicationsCapable: vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications.

• ugvCapabilityType: describes a capability that a UGV must possess in
order to successfully complete a defined mission. Valid values:

tracked: vehicle must be tracked vice wheeled.
gpsCapable: vehicle must be capable of GPS navigation.
communicationsCapable: vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications.

• usvCapabilityType: describes a capability that a USV must possess in
order to successfully complete a defined mission. Valid values:

gpsCapable: vehicle must be capable of GPS navigation.
communicationsCapable: vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications.

• uavCapabilityType: describes a capability that a UGV must possess in
order to successfully complete a defined mission. Valid values:

fixedWing: vehicle must be fixed wing.
rotaryWing: vehicle must be rotary wing (hover capable).
multiEngine: vehicle must have more than one engine.
gpsCapable: vehicle must be capable of GPS navigation.
communicationsCapable: vehicle must be capable of run-time inter-
vehicle or vehicle-control station communications.

• frequencyUnitType: specifies frequency units for an acoustic or
electromagnetic transmission. Valid values:

Hz: hertz.
KHz: kilohertz.
MHz: megahertz.
GHz: gigahertz.

• turnDirectionType: specifies a turn direction. Valid values:

left: turn is to be to the vehicle’s left or port.
port: same as left.
right: turn is to be to the vehicle’s right or starboard.
starboard: same as right.

256

• trackModeType: specifies a waypoint homing mode. Valid values:

directTo: always travel directly towards the goal location.
trackTo: always correct to a specified track so as to approach the
waypoint from a specific direction.

• monthsType: specifies a calendar month. Valid values:

January, February, March, April, May, June, July, August, September,
October, November, and December.

• datumType: specifies whether a search is to focus on a single point
(operating area center) or provide for full area coverage. Valid values:

point: the search is to focus on the centroid of the operating area.
area: the search is to provide equal coverage of the entire operating area.

• illuminatorType: specifies a type of illuminator capable of providing area
illumination. Valid values:

pyrotechnic: flare or other pyrotechnic illumination source.
spotlight: directable searchlight or spotlight illumination source.

• markerType: specifies a type of marker for location or object marking.
Valid values:

laser: laser designator marking.
smoke: visible smoke marker.

• contaminantType: specifies a type of contaminant that is to be tested for
or cleansed. Valid values:

nuclear: radiological contamination or hazard.
chemical: chemical weapon or agent contamination.
biological: biological contamination or hazard.
toxin: potentially poisonous or hazardous substance or chemical.
explosive: explosive agent or component.

• weaponStatusType: specifies the conditions under which weapons can be
employed. Valid values:

safe: Weapons authorized in self defense or in response to a formal order.
tight: Weapons authorized against targets positively identified as hostile.
free: Weapons authorized against targets not positively identified as
friendly or neutral.

• reportingCriteriaType: specifies when a vehicle is to make status reports
while attempting to accomplish an agenda-mission goal. Valid values:

never: do not make status reports.
periodic: make status reports at specified intervals.
statusChanged: make status reports when goal-execution status changes.
onCommence: report when commencing execution of a goal.
onComplete: report when completing execution of a goal.

257

• acknowledgeType: specifies the circumstances under which receipt of a
message is to be acknowledged. Valid values:

yes: always acknowledge receipt of this message.
no: never acknowledge receipt of this message.
optional: acknowledgement is permissible but not required.
positiveOnly: only acknowledge this message if the requested information
or action will be provided.
negativeOnly: only acknowledge this message if the requested
information or action will not be provided.

• informationRequestType: content for information request messages
defining the type of information that is being requested. Valid values:

ping: request for a simple presence message.
sensorData: request for a sensor data report
contactSummary: request for a summary of all current contacts.
controlSettings: request for the receiving vehicle’s currently ordered
control settings.
posture: request for the vehicle’s current location and orientation
information.
velocity: request for the vehicle’s current velocity information.
waypoint: request for the vehicle’s next destination location.

• vehicleGroupCompositionType: content for messages relating to the
maintenance of cooperating groups of vehicles. Valid values:

initiateGroupFormation: begin the group-formation process.
finalizeGroupFormation: end group-formation and begin work.
dissolveGroup: terminate the existence of a group and release all vehicles
making up the group for other tasking.
locateGroup: sending vehicle is attempting to make contact with an
established group if one is present.
joinGroup: sending vehicle is attempting to join an established group.
leaveGroup: sending vehicle is leaving an established group.

C. REUSABLE COMPLEX DATA TYPES

AVCL defines a number of reusable complex types. These define element

content models including child element and attribute names and types.

The most rudimentary AVCL complex type is the noValueElementType.

Instantiated elements of this type have no child elements and are intended to convey

information primarily through the assigned element name. These elements may include

the optional attributes listed in Table A.2. These attributes, referred to as AVCL’s

“common attributes,” are valid with any element in the AVCL tag set. Their use

throughout the schema is assumed to comply with Table A.2 unless otherwise noted.

258

Attribute Name Type Use Description

description xsd:string optional Provides arbitrary amplifying information
describing the element.

timeStamp positiveScalarType optional Used to associate a time with the element.

id xsd:ID optional Unique identifier that can be used elsewhere
to reference this element.

Table A.2. Optional Attributes Available for use with all AVCL Elements

AVCL defines a number of complex types with a single data item. Described in

Table A.3, these complex types use a “value” attribute to hold the data of interest. The

attribute type is constrained using a built-in XML (indicated by the XML “xsd”

namespace designator) or an AVCL simple type. A numericalBlockElementType is also

available. This type uses required “minimum” and “maximum” attributes

(nonNegativeScalarType and positiveScalarType) to specify a numerical range.

Complex Type Value Attribute Type Value Attribute Description

scalarElementType xsd:double A double precision numerical value.

positiveScalarElementType positiveScalarType A positive double-precision
numerical value.

nonNegativeScalarElementType nonNegativeScalarType A non-negative double-precision
numerical value

integerElementType xsd:int A 32-bit integer.

positiveIntegerElementType positiveIntType A positive 32-bit integer.

nonNegativeIntegerElementType nonNegativeIntType A non-negative 32-bit integer.
booleanElementType xsd:boolean A Boolean value.

stringElementType xsd:string An arbitrary string value.

tokenElementType xsd:token A white-space-free string value.

percentElementType percentType A percentage.

signedPercentElementType signedPercentType A signed percentage.

headingElementType headingType An orderable vehicle heading.

areaOrientationElementType areaOrientationType A rotation angle to be applied to a
geographic area.

priorityElementType priorityType Specifies a message priority.

acknowledgeElementType acknowledgeType Specifies message
acknowledgement requirements.

trackModeElementType trackModeType Specifies a waypoint homing mode.

Table A.3. AVCL Complex Types Containing a Single Data Item in the form of a
“value” Attribute

259

Among the requirements of an autonomous vehicle data model is the ability to

specify geographic positions. AVCL types and attributes available for this purpose are

depicted in Figure A.1 and Table A.4. All AVCL positions derive from one of two types

(xyElementType and latitudeLongitudeElementType) that encode a latitude and longitude

or a Cartesian coordinate pair. AVCL extends these types to implement absolute and

relative positions through the AbsoluteHorizontalPositionElements and

HorizontalPositionElements groups of Figure A.1. These, in turn, form the basis of the

horizontalPositionElementType and absoluteHorizontalPositionElementType complex

types (not depicted) that consist of an element with a single absolute or relative position

child element.

Figure A.1. AVCL Complex Types and Groups for Representing Geographic Position

Name Type Description

x xsd:double Specifies a Cartesian x coordinate in either the global coordinate
frame or relative to the current vehicle position.

y xsd:double Specifies a Cartesian y coordinate in either the global coordinate
frame or relative to the current vehicle position.

latitude latitudeType Specifies the latitude portion of a geographic position.

longitude longitudeType Specifies the longitude portion of a geographic position.

Table A.4. Attributes of AVCL Elements Available for Representing Absolute and
Relative Positions

260

An obvious application of the AVCL types for specifying position is a set of types

for specifying geographic areas. Areas in AVCL are specified as points, circles,

rectangles, or polygons. A point consists of an element (with a “Point” name and the

common AVCL attributes) with a single child (absoluteHorizontalPositionElementType).

The structure and composition of the circleElementType, polygonElementType and

rectangleElementType are depicted in Figures A.2, A.3, and A.4 respectively. The

circleElementType is fairly self-explanatory and specifies the area with child elements

containing the geographic center of the circle and a radius in meters. Polygons are

specified simply with a sequence of either latitudeLongitudeElementType or

xyElementType position elements containing the ordered vertices of the polygon.

Rectangles are specified with child elements for the geographic position of the northwest

corner, the horizontal width in meters, the height in meters, and an optional element for a

clockwise angle of rotation in degrees. An AreaElements group is used to provide a

container type for a single area element.

Figure A.2. The AVCL circleElementType for Specifying a Geographic Area as a Circle

261

Figure A.3. The AVCL polygonElementType for Specifying a Geographic Area as an

Arbitrary Polygon

Figure A.4. The AVCL rectangleElementType for Specifying a Geographic Area as a

Rectangle

Also useful in various portions of an autonomous vehicle data model is the ability

to represent vehicle and contact states. The position elements described above are

applicable here, however vehicle orientation and velocity are also important. AVCL

262

provides four basic types for this purpose: orientationElementType,

worldCoordinateVelocityElementType, bodyCoordinateVelocityElementType and

dopplerVelocityElementType. Each of these consists of childless elements with the

attributes described in Tables A.5 through A.7.

Attribute Use Type Description

phi optional orientationType Euler angle rotation about the body or world
coordinate frame X axis (bank).

theta optional orientationType Euler angle rotation about the body or world
coordinate frame Y axis (pitch).

psi optional orientationType Euler angle rotation about the body or world
coordinate frame Z axis (yaw).

Table A.5. AVCL Orientation Element Type Attributes

Attribute Use Type Description

xDot optional xsd:double
Linear velocity (meters per second) along the
X axis of the world coordinate frame (north
positive).

yDot optional xsd:double Linear velocity along the Y axis of the world
coordinate frame (east positive).

zDot optional xsd:double Linear velocity along the Z axis of the world
coordinate frame (down positive).

phiDot optional xsd:double Angular velocity (degrees per second) about
the X axis of the world coordinate frame.

thetaDot optional xsd:double Angular velocity about the Y axis of the world
coordinate frame.

psiDot optional xsd:double Angular velocity about the Z axis of the world
coordinate frame.

u optional xsd:double Linear velocity along the X axis of the body
coordinate frame (vehicle forward).

v optional xsd:double Linear velocity along the Y axis of the body
coordinate frame (vehicle right).

w optional xsd:double Linear velocity along the Z axis of the body
coordinate frame (vehicle down).

p optional xsd:double Angular velocity about the X axis of the body
coordinate frame.

q optional xsd:double Angular velocity about the Y axis of the body
coordinate frame.

r optional xsd:double Angular velocity about the Z axis of the body
coordinate frame.

Table A.6. Attributes Defined by the AVCL Complex Types for Representing Velocity
Relative to the World-Fixed and Body-Fixed Coordinate Frames

263

Attribute Use Type Description

speedOverGroundU optional xsd:double Computed or measured forward linear
velocity over the ground.

speedOverGroundV optional xsd:double Computed or measured lateral linear
velocity over the ground.

speedThroughMediumU optional xsd:double Computed or measured forward linear
velocity through the air or water.

speedThroughMediumV optional xsd:double Computed or measured lateral linear
velocity through the air or water.

Table A.7. AVCL Attributes for Representing Doppler-Based Velocity Over the Ground
and Through the Air or Water

Similar in concept to AVCL’s state types are a set of groups used to specify

depth, altitude, and speed. These elements are used to indicate partial vehicle or contact

state, ordered behavior requirements, and to define the vertical characteristics of areas.

Each group provides for the selection of a single element. The names and types of the

elements associated with each of these groups are described in Table A.8. In some

instances, these types are further grouped using the AVCL VerticalBlockElements group

that provides for the selection of a single subgroup from the table.

Type Element Name Type Description

Depth nonNegativeScalarElementType Depth (meters) of a vehicle or
contact below the ocean surface.

DepthTypeElements
Altitude nonNegativeScalarElementType Altitude (meters) of a vehicle or

contact above the ocean surface.

DepthBlock numericalBlockElementType Specifies a depth below the
surface range.

AltitudeBlock numericalBlockElementType Specifies an altitude above the
bottom range. DepthBlockElements

DepthAltitudeBlock numericalBlockElementType
Specifies a minimum depth to
minimum altitude above the bottom
range.

AGLAltitude nonNegativeScalarElementType Specifies an above-ground-level
altitude (meters).

AltitudeTypeElements
MSLAltitude nonNegativeScalarElementType Specifies a mean-sea-level altitude

(meters).

AGLAltitudeBlock numericalBlockElementType Specifies a range of above ground
level altitudes.

MSLAltitudeBlock numericalBlockElementType Specifies a range of mean sea
level altitudes. AltitudeBlockElements

AGLMSLALtitudeBlock numericalBlockElementType
Specifies a maximum mean sea
level to minimum above ground
level altitude range.

Speed nonNegativeScalarElementType Specifies a speed in meters per
second.

SpeedTypeElements
Knots nonNegativeScalarElementType Specifies a speed in nautical miles

per hour (knots).

Table A.8. AVCL Groups Used to Specify Depth, Altitude and Speed

264

The preceding types are among the most commonly utilized. Other complex

types defined by the AVCL schema are less widely used. These are discussed in

conjunction with the sections of AVCL to which they are applicable.

D. TOP-LEVEL DOCUMENT STRUCTURE
There are three valid AVCL root element tags: “AVCL,” “AVCLMessage” and

“AVCLMessageList.” A document with an “AVCL” root element defines a single

mission definition or contains results from an executed mission. A document with an

“AVCLMessage” root element contains a single inter-vehicle message. Finally,

documents with an “AVCLMessageList” root element contain one or more messages.

The high-level structure of the “AVCL” element is depicted in Figure A.5.

Children include an optional “head” element containing “meta” elements that can encode

arbitrary descriptive information and a required “body” element that contains the actual

mission definition and results. Attributes associated with these and other immediate

descendants of the “AVCL” element are listed in Table A.9.

Figure A.5. Structure of the AVCL Root Element for Mission Definition and Mission

Results Documents

265

The “body” element contains a required “MissionPreparation” element and

optional “EventLog” and “MissionResults” elements (the latter two are discussed in

Section F). The “MissionPreparation” element (Figure A.6) has one required child

(“UnitsOfMeasure”) which indicates the units used throughout the document. Optional

children consist of a “GeoOrigin” element defining the origin of the world-fixed

coordinate frame, a “Configuration” element describing the characteristics of the vehicle

for which the document is intended, and a mission-definition element (discussed in

Section E). The “Configuration” element contains optional “Dimensions,”

“OperatingCharacteristics,” and “DegreesOfControl” elements, and zero or more

“Capability” elements. The attributes of the “Dimensions” and “DegreesOfControl”

elements are listed in Table A.9 and the “Capability” element has a single “value”

attribute constrained by one of the previously discussed vehicle-specific capability types

(e.g., uuvCapabilityType). Attributes associated with an “OperatingCharacteristics”

element vary with vehicle type (see the AVCL schema for a further description).

The remaining AVCL root elements, “AVCLMessage” and “AVCLMessageList”

are used to encode inter-vehicle message data. Their content models are discussed in

detail Section G of this appendix. The high-level structure of both elements (depicted in

Figure A.7) is similar to that of the “AVCL” element in that the immediate children of

both are a “head” element (optional for the “AVCLMessageList” element) and a “body”

element. In fact, the content model of the “head” child of an “AVCLMessageList”

element is identical to that of an “AVCL” element as are all of the root-element

attributes. The “body” child element of an “AVCLMessageList” element contains one or

more “AVCLMessage” elements. The attributes of an “AVCLMessage” element include

the common AVCL attributes and a mandatory “version” attribute with a fixed value of

“1.0.” The content models of the “head” and “body” elements of an “AVCLMessage”

element are discussed in Section G.

266

Element Attribute Use Type Description

version required fixed "1.0" Identifies the AVCL version.

vehicleType optional xsd:string Identifies a vehicle type to
which the document applies.

vehicleID optional xsd:unsignedShort Identifies a specific vehicle to
which the document applies.

AVCL

date optional xsd:date Document or mission date.

name required xsd:string The type of annotating
information encoded. meta

content optional xsd:string Amplifying information.

distance required fixed "meters" All AVCL distances are
specified in meters.

angle required fixed "degrees" AVCL angles are degrees.
mass required fixed "kilograms" AVCL masses are kilograms.

UnitsOfMeasure

time required fixed "seconds" AVCL times are seconds.

latitude required latitudeType Latitude of the world-fixed
coordinate frame origin.

longitude required longitudeType Longitude of the world-fixed
coordinate frame origin. GeoOrigin

radiusOfInterest optional positiveScalarType Rough estimate of the
operating area size.

length required positiveScalarType Vehicle longitudinal length.

width required positiveScalarType Vehicle lateral width or
wingspan.

height required positiveScalarType Vehicle vertical height.
Dimensions

mass required positiveScalarType Vehicle mass.

longitudinal optional xsd:boolean Indicates fore / aft
controllability (default true).

lateral optional xsd:boolean Indicates left / right
controllability (default false).

vertical optional xsd:boolean Indicates vertically
controllability (default false).

roll optional xsd:boolean Indicates roll controllability
(default false).

pitch optional xsd:boolean Indicates pitch controllability
(default false).

DegreesOfControl

yaw optional xsd:boolean Indicates yaw controllability
(default true).

Table A.9. AVCL Attributes Associated with the “AVCL” Element and its Immediate
Descendants

267

Figure A.6. The Content Model of the AVCL “MissionPreparation” Element

Figure A.7. AVCL Document Root Elements for Inter-Vehicle Message Passing

268

E. MISSION DEFINITION

1. Task-Level Behavior Scripts

a. Overview
AVCL provides two basic methods for specifying a mission. The first is

using task-level behavior scripts. Depicted in Figure A.6, a task-level behavior script is

specified using one of the vehicle-type-specific script tags from the MissionSpecification

group. Each of these elements contains a sequence of one or more task-level behaviors

associated with the particular vehicle type. Available behaviors for each vehicle type are

described in the following sections.

b. UUV Behaviors

AVCL defines 30 UUV task-level behaviors. Among these are behaviors

classifiable as closed-loop / terminating, closed-loop / open-ended, open-loop, and

miscellaneous behaviors as described in Chapter IV as well as a number of behaviors that

pertain to missions run in simulation. The remainder of this section describes these

behaviors, each of which is specified with an element with the behavior name.

The CompositeWaypoint behavior (Figure A.8) is used to succinctly

define a predefined pattern of waypoints. The “CompositeWaypoint” element’s first

child element is used to specify the type of pattern (IMO and ICAO, 98) using one of the

elements depicted in Figure A.9. The required attributes (described in Table A.10)

parametrically specify the characteristics of the pattern and the child element specifies the

position of the first waypoint. Depth below the surface or altitude above the bottom that

the vehicle is to maintain throughout the pattern is included with a “Depth” or “Altitude”

element. An optional “HomingMode” element determines whether the vehicle is to

adhere to the tracks defined by the waypoints or proceed directly to each waypoint.

Vehicle speed is optionally ordered with the next child element (content models are

covered with the same-name behaviors). Finally, optional “GpsFixes,” “Standoff,” and

“TimeOut” elements are used to specify the number of fixes to obtain over the course of

the pattern, how close (meters) the vehicle must get to each waypoint before proceeding

to the next, and how long (seconds) the vehicle has to achieve each waypoint.

269

Figure A.8. The AVCL UUV-Specific Composite Waypoint Task-Level Behavior

270

Figure A.9. AVCL Elements for Parametrically Specifying a Pre-Defined Waypoint

Pattern

Attribute Type Description

orientation headingType Heading of the first leg of the pattern.

firstTurn turnDirectionType Direction of the pattern's first turn.

trackLength positiveScalarType Length (meters) of a parallel track pattern's tracks.

trackSpacing positiveScalarType Distance (meters) between the pattern's parallel tracks.

trackCount positiveIntType The number of tracks or legs in a parallel-track or expanding-
square pattern.

sectorCount positiveIntType The number of sectors in a sector pattern.

sectorWidth positiveScalarType Width (degrees) of the sectors in a sector pattern

radius positiveScalarType The radius (meters) of the enclosing circle of a sector pattern.

Table A.10. Attributes Associated with AVCL Composite Waypoint Elements

271

A FollowBeacon behavior is used to order the vehicle to proceed directly

towards source of a beacon or transponder. The specific beacon is optionally defined

with a “Beacon” element of type stringElementType (if no beacon is listed, vehicle

defaults determine the nature of the beacon). An optional “TimeOut” element is used to

specify how long the vehicle is to proceed towards the beacon. If no time out is included

or the vehicle reaches the source before the time out expiration, the behavior terminates.

A GpsFix behavior directs the vehicle to the surface for a GPS fix (other

control aspects are not affected). It is defined using an extension to the

booleanElementType. A “value” attribute of “true” initiates the behavior, while a value

of “false” terminates an active GpsFix behavior (a GpsFix behavior with a “value”

attribute of “false” is ignored if no GpsFix behavior is active). An optional “timeOut”

attribute (nonNegativeScalarType) is used to set the maximum allowable time the

behavior is to be active. Omitting the “timeOut” attribute or setting it to zero means that

the vehicle is to remain surfaced until the fix is obtained. The GpsFix behavior

terminates when a fix has been obtained, the behavior times out, or a new GpsFix

behavior with a “value” attribute of “false” is activated. Upon termination, the

previously active depth-control behavior resumes.

A Hover behavior is used to direct the vehicle to maintain a fixed position

at a specific location (i.e., hover in place). Defined as depicted in Figure A.10, behavior

requirements are encoded in the children (all optional) of a “Hover” element. The first

child is from the HorizontalPositionElements group and specifies the hover location in

either absolute terms or relative to the vehicle’s position upon behavior activation. If this

element is omitted, the vehicle is to hover at the current location. The next element, from

the DepthTypeElements group, specifies depth below the surface or altitude above the

bottom for both transit and hover. Omitting this element retains the previous depth

behavior. Inclusion of a “Heading” element (headingElementType) specifies the heading

to maintain while hovering, while omission retains the previous heading behavior in the

hover. An optional “ObtainGps” element (booleanElementType) can direct the vehicle

to obtain a GPS fix during while transiting to the hover point. A “Standoff” element

(positiveScalarTypeElement) defines the acceptable distance (meters) from the ordered

hover location. Finally, a “TimeOut” element (positiveScalarTypeElement) specifies the

272

maximum time allotted to reach the designated location and establish a steady hover

(omission of this element means that the behavior will not time out). The Hover behavior

terminates when a steady is established or the behavior times out unless extended with a

Wait or WaitUntilTime behaviors (description to follow).

Figure A.10. An AVCL Element for Initiating a UUV Hover Behavior

Similar to the Hover behavior, a Loiter behavior also directs the vehicle to

remain at a specific location, however it does not require the vehicle to remain stationary.

Constructed as depicted in Figure A.11, the Loiter behavior parameters are contained in

the children of a “Loiter” element. The first child element comes from the

HorizontalPositionElements group and specifies the loiter location. If this element is

omitted, the current position is to be used. The next child, from the DepthTypeElements

group, determines the transit depth below the surface or altitude above the bottom. If

273

omitted, the currently active depth behavior remains in effect. A transit-speed is ordered

using a “SetPower,” “MakeKnots,” or “MakeSpeed” element with a content model

matching that of the behavior of the same name. If no speed is included, the greater of

the minimum acceptable transit speed and the most recently ordered speed is to be used.

Vehicle speed upon reaching the loiter point is vehicle-specific. A required

“LoiterDepth” positiveScalarElementType element specifies the depth at which the

vehicle is to loiter. Finally, a “TimeOut” element (positiveScalarElementType) is used to

specify a maximum allowable time to reach the loiter point (if omitted, the behavior will

not time out). The Loiter behavior terminates upon time out or upon reaching the loiter

point (whichever occurs first) unless the behavior termination is suspended with a Wait

or WaitUntilTime behavior.

Figure A.11. AVCL Element for Initiating a UUV Loiter Behavior

274

Available closed-loop / open-ended behaviors include a MakeAltitude,

MakeDepth, MakeHeading, MakeKnots, and MakeSpeed. These behaviors are

summarized in Table A.11. MakeAltitude and MakeDepth behaviors are defined using a

positiveScalarElementType to command an altitude above the bottom or depth below the

surface in meters. MakeHeading orders vehicle heading in degrees. MakeKnots and

MakeSpeed are used to order a specific vehicle speed in nautical miles per hour (knots)

or meters per second respectively. Both behaviors are defined with an extended

positiveScalarElementType element with an optional Boolean parameter

(“speedOverGround”) that determines whether the behavior is ordering speed over the

ground or through the water. All of these behaviors remain active until superseded.

Behavior AVCL Type Description

MakeAltitude positiveScalarElementType Orders the vehicle to maintain a specified altitude
above the bottom (meters).

MakeDepth positiveScalarElementType Orders the vehicle to maintain a specified depth
below the surface (meters).

MakeHeading headingElementType Orders the vehicle to maintain a specified heading
(degrees).

MakeKnots extended
positiveScalarElementType

Orders the vehicle to maintain a specified speed
over the ground or through the water (knots).

MakeSpeed extended
positiveScalarElementType

Orders the vehicle to maintain a specified speed
over the ground or through the water (meters per
second).

Table A.11. Available AVCL UUV Closed-Loop / Open-Ended Behaviors

As described in Chapter V, the MetaCommand behavior does not directly

effect vehicle control, but it provides a useful container for annotating information that

effects how the script is interpreted or converted to vehicle-specific formats. The

“MetaCommand” element content model matches that of the “meta” element discussed in

the previous section in both content and interpretation.

AVCL provides two behaviors for replacing or adding to an executing

script. The MissionScript and MissionScriptInline behaviors are both defined using a

stringElementType element where the “value” attribute indicates the path to the new task-

level behavior script. The MissionScript behavior is used to replace the currently

executing script completely. The MissionScriptInline behavior, on the other hand, inserts

the newly loaded script into the currently executing script at the current position.

275

The MoveLateral and MoveRotate behaviors apply only to UUVs with

cross-body thrusters. The MoveLateral behavior requires the vehicle to use its thrusters

to slide laterally while the MoveRotate behavior requires the vehicle to use its thrusters to

rotate about the body-fixed coordinate system Z axis. Both open-loop behaviors are

defined with a signedPercentElementType element where the “value” attribute indicates

the percentage of available power to apply to the thrusters and both remain active until

superseded by a behavior requiring heading, hover, or waypoint control.

A Quit behavior is used to indicate the end of a script. Following

activation, all other active behaviors are terminated and the vehicle will initiate any

required mission conclusion procedures. The “Quit” element has up to one optional child

element (noValueElementType) that is used to indicate the reason the behavior was

activated. Allowable child element names are “NormalExit,” “MissionAbort,”

“SystemAbort,” and “RecallAbort.”

The Realtime behavior is the first that pertains exclusively to missions run

in simulation. This behavior is initiated using a booleanElementType element and is used

to toggle a simulation between real-time execution (i.e., simulation elapsed time equals

elapsed clock time) and fastest possible execution (i.e., simulation elapsed time greater

than elapsed clock time). The most recently activated real-time setting remains in effect

until superseded.

A SendMessage behavior is used to conduct inter-vehicle

communications. The sole child element of a “SendMessage” element is an

“AVCLMessage” element that is to be transmitted. The message content model of the is

discussed in Section G.

AVCL provides open-loop behaviors to control the rudder, horizontal

control planes, propellers and cross-body thrusters. The simplest of these is the

SetRudder behavior which uses a signedPercentElementType element to order rudder

deflection as a percentage of the maximum authority. On vehicles with bow and stern

rudders, the command is applied to the stern rudder and the bow rudder receives the

opposite order. As with all open-loop behaviors, the order directs a control setting, but

not necessarily a direction of vehicle movement. For instance a positive rudder setting

276

orders the forward edge of the stern rudder to the right but has the effect of yawing the

vehicle to the left. The SetPlanes, SetPower, and SetThruster behaviors are described in

Table A.12. The element used to define each of these behaviors contains one child

element (signedPercentageElementType) from those listed in the table that identifies the

specific controller that the behavior orders. As with the SetRudder behavior, the control

setting is ordered as a percentage or maximum authority. Unless otherwise specified,

behaviors that attempt to affect controllers not possessed by the target vehicle are

ignored. All of the open-loop behaviors remain in effect until superseded.

Behavior Child Element Order Description

BowPlane Percent of maximum deflection for the bow horizontal
planes (positive indicates forward edge up).

SternPlane Percent of maximum deflection for the aft horizontal
control planes (positive indicates forward edge up) SetPlanes

AllPlanes
Combined order for fore and aft control planes. Planes will
deflect in opposite directions. The sign of the "value"
attribute is applied to the stern plane.

PortPropeller Percent of maximum power from the port propeller (if
single-prop, the order applies to the single propeller).

StarboardPropeller Percent of maximum power from the starboard propeller If
single-prop, the order applies to the single propeller).

CenterlinePropeller Percent of maximum power from the port propeller (if
single-prop, the order applies to the single propeller).

SetPower

AllPropellers Orders a percentage of maximum power from all
propellers.

BowLateralThruster
Percent of maximum power from the bow-lateral cross-
body thruster (positive pushes the vehicle nose to the
right)

SternLateralThruster
Percent of maximum power from the stern-lateral cross-
body thruster (positive pushes the vehicle stern to the
right).

LateralThrusters Percent of maximum power from all lateral cross-body
thrusters (positive pushes the vehicle to the right).

BowVerticalThruster Percent of maximum power from the bow-vertical cross-
body thruster (positive pushes nose of vehicle down).

SternVerticalThrusters Percent of maximum power from all vertical cross-body
thrusters (positive pushes the vehicle stern down).

SetThruster

VerticalThrusters Percent of maximum power from the stern-vertical cross-
body thruster (positive pushes stern of vehicle down).

Table A.12. AVCL Open-Loop Behaviors for Control of Propellers, Cross-Body
Thrusters and Horizontal Control Planes

277

The SetPosition behavior is provided as a means of resetting the vehicle’s

internally maintained position data to a new value. The “SetPosition” element has a

mandatory child element from the AbsoluteHorizontalPositionElements group that

defines the new geographic position and an optional “Depth” element

(positiveScalarElementType) specifying the current depth below the surface.

The SetStandoff behavior is used to change the capture radius of

waypoints, hover points, and loiter points (i.e., the distance at which a waypoint, loiter

point, or hover point is considered achieved). Defined with a positiveScalarElementType

element, the “value” attribute specifies the new capture radius in meters. While not

directly affecting vehicle control, the standoff distance is an implicit part of all Waypoint,

Hover, and Loiter behaviors and remains in effect until superseded.

Used primarily in simulations, the SetTime behavior changes the vehicle’s

internally maintained time. It is defined using a positiveScalarElementType element

where the “value” attribute specifies the number of seconds since beginning execution.

Also used primarily in simulations, the SetTimeStep behavior changes the

amount of time between each iteration of the main control loop. Also defined using a

positiveScalarElementType element, the “value” attribute determines the time (seconds)

for each loop iteration. The new closed-loop time step remains in effect until superseded.

The Trace behavior is the final UUV task-level behavior intended for

simulations. It is used to enable and disable any verbose output based on the “value”

attribute of a booleanElementType element. The setting specified by a Trace behavior

remains in effect until superseded.

The Wait and WaitUntilTime behaviors do not directly influence vehicle

control, but are used to extend the activation period of currently active behaviors, most

commonly, Hover or Loiter. Both are defined with positiveScalarElementType elements.

The “value” attribute of a “Wait” element defines the amount of time (seconds) following

activation that the behavior is to remain active. The “value” attribute of a

“WaitUntilTime” element, on the other hand, defines an absolute clock time (seconds

from execution start) at which the behavior is to deactivate. While active, a Wait or

WaitUntilTime behavior will preclude the activation of further behaviors. Under normal

278

circumstances, a Wait or WaitUntilTime behavior will remain active until its termination

time unless terminated by a higher-level in a multi-layer control architecture.

The final UUV task-level behavior is the Waypoint behavior. It is used to

order the vehicle to transit to a specific geographic location and is defined with an

element of the form of Figure A.12. The waypoint position is specified in relative or

absolute terms with an element from the HorizontalPositionElements group. Depth

below the surface or altitude above the bottom is optionally ordered using an element

from the DepthTypeElements group. An optional trackModeElementType element can

order the vehicle to continuously proceed directly towards the waypoint or track along

the path between the previous and current waypoints. An en route GPS fix is ordered

with an optional “ObtainGps” element (booleanElementType). Finally, the waypoint

capture radius is optionally defined with a “Standoff” element and the time allotted to

reach the waypoint is optionally specified with a “TimeOut” element (both

positiveScalarElementType). A Waypoint behavior terminates upon reaching the

waypoint or upon timing out (the behavior will not time out if the “TimeOut” element is

omitted) unless its activation is extended using a Wait or WaitUntilTime behavior.

c. UGV Behaviors

The majority of task-level behaviors available for UGV use are identical

to those for UUV use. The FollowBeacon, MakeHeading, MakeKnots, MakeSpeed,

MetaCommand, MissionScript, MissionScriptInline, Quit, Realtime, SendMessage,

SetStandoff, SetTime, SetTimeStep, Trace, Wait, and WaitUntilTime behaviors all fall

into this category. The remaining UGV behaviors also have UUV counterparts, but their

content models vary somewhat because of the inherent differences in vehicle capabilities.

All other UGV behaviors also have UUV counterparts, but their content

models are not identical. The CompositeWaypoint, Loiter, SetPosition, and Waypoint

behaviors make up this category. These behaviors are identical to their UUV

counterparts in execution, semantics, and activation / termination criteria. The content

differences consist of the absence of elements and attributes relating to depth below the

surface or altitude above the bottom, and the elimination percentage of maximum

available power as a means of specifying speed (UGV speed is specified with

“MakeKnots” and “MakeSpeed” elements).

279

Figure A.12. An AVCL Element for Initiating a UUV Waypoint Behavior

d. USV Behaviors
The elements used to specify UGV behaviors are all available for use in

specifying the same behavior for a USV without modification. Additionally, the

elements used to specify the UUV SetPower and SetRudder behaviors are used to specify

the USV behavior of the same name. In all cases, the content model and semantics of the

element used to define the USV behavior are identical to those of the UGV or UUV

behavior as are the behavior activation and termination criteria.

280

e. UAV Behaviors

Not surprisingly, the content models and semantics of the majority of

elements for specifying UAV task-level behaviors match those of the corresponding

behaviors for one or more other vehicle types. The definition elements of the UAV

FollowBeacon, MakeHeading, MakeKnots, MakeSpeed, MetaCommand, MissionScript,

MissionScriptInline, Quit, Realtime, SendMessage, SetStandoff, SetTime, SetTimeStep,

Trace, Wait, and WaitUntilTime behaviors are identical to those of all other vehicles.

Additionally, definition element for the UAV SetRudder behavior matches those of the

corresponding UUV and USV behavior.

The elements for defining the UAV CompositeWaypoint, Loiter,

SetPosition, and Waypoint behaviors are similar to those of the other vehicle types as

well. The UAV “SetPosition” element, for instance, differs from that of the

corresponding UUV element only in the replacement of the optional “Depth” child

element with an optional “MSLAltitude” element to specify the vehicles current mean-

sea-level altitude. The UAV “CompositeWaypoint” element (Figure A.13) differs from

that of the UUV in two regards. The first is an element from the AltitudeTypeElements

group (replacing one from the DepthTypeElements group) that specifies the above

ground level or mean sea level altitude for pattern’s waypoints. The second difference is

that as with UGVs and USVs, speed is orderable in knots or meters per second, but not as

a percentage of maximum power. The UAV “Loiter” and “Waypoint” elements (Figure

A.14) also replace depth and speed elements of the UUV-specific element in this way.

Additionally, AVCL provides a number of closed-loop / open-ended and

open-loop behaviors that do not correspond to behaviors of another vehicle type. These

are listed and described in Table A.13. As with other closed-loop / open-ended and open-

loop behaviors, these UAV behaviors remain active until superseded.

281

Figure A.13. An AVCL Element for Initiating a UAV Composite Waypoint Behavior

Figure A.14. AVCL Elements for Initiating UAV Loiter and Waypoint Behaviors

282

UAV Behavior Element Type Description

MakeAltitudeAGL positiveScalarElementType Orders the vehicle to maintain the specified
above ground level altitude (meters).

MakeAltitudeMSL positiveScalarElementType Orders the vehicle to maintain the specified
mean sea level altitude (meters).

MakeClimbRate signedPercentElementType Orders the vehicle to climb or descend at a
percentage of its maximum available rate.

MakeTurnRate signedPercentElementType Orders the vehicle to turn left or right
(negative) at its maximum available rate.

SetAileron signedPercentElementType
Orders a percentage of maximum aileron
deflection (left and right are opposite, positive
order induces a right bank).

SetElevator signedPercentElementType
Orders a percentage of maximum available
elevator or horizontal stabilator deflection
(positive is leading edge up).

SetPower percentElementType Orders a percentage of maximum available
engine power (effects all engines equally).

Table A.13. Elements for Specifying UAV-Specific Closed-Loop / Open-Ended and Open-
Loop Behaviors

2. Declarative Missions

a. Overview

The second method of defining a mission using AVCL is as a declarative

agenda. An agenda consists of high-level goals that are to be accomplished over the

course of a mission and constraints that must be observed throughout the mission’s

execution. Unlike scripted missions, AVCL agendas are largely vehicle-type

independent. AVCL agendas can, however, define operating areas with depth or altitude

restrictions that make them inherently applicable only to UUVs or UAVs respectively.

The “AgendaMission” element defining an AVCL agenda is the last acceptable child

element of the “MissionPreparation” element depicted in Figure A.6.

The structure of the “AgendaMission” element is depicted in Figure A.15.

The first two child elements are optional “LaunchPosition” and “RecoveryPosition”

elements, both from the AbsoluteHorizontalPositionElements group. These elements are

used to specify the geographic position of the vehicle at mission commencement and the

desired position at the mission conclusion. If the “LaunchPosition” element is omitted, it

is assumed that the launch position is irrelevant (i.e., the vehicle will be able to determine

its position at launch). If the “RecoveryPosition” element is omitted but the agenda

283

includes a “LaunchPosition” element, the specified launch position will also be used for

the recovery position. If neither element is present, the assumed vehicle response is to

conclude the mission immediately following the success or failure of the final goal. It is

allowable, however, for the vehicle to return to its run-time determined launch position

following completion of the last goal.

The only required child element of the “AgendaMission” element is the

“GoalList” element containing definitions for all of the goals that might be executed over

the course of the mission. Mission execution begins with the first goal of the mission.

The execution order of all subsequent goals is determined by the success and failure of

individual goals and the goal definitions themselves. The content models of individual

goals is discussed in a subsequent section of this appendix.

The final child of the “AgendaMission” element is the “ConstraintList”

element. This element contains three optional child elements as depicted in Figure A.15.

“IngressRouting” and “EgressRouting” elements contain routing, altitude, or depth

restrictions for the transit to and from the operating area and “AvoidArea” elements

contain geographic areas, depths, or altitudes that are to be avoided during the mission.

The content model descriptions for the routeElementType and areaElementType.

b. Route and Area Definition
Routing in an AVCL agenda is used only in conjunction with ingress and

egress. It provides a means of specifying geographic points that the vehicle is to utilize

or altitude or depth restrictions as it transits to and from the operating area. The

routeElementType content model is depicted in Figure A.16. It consists of an optional

sequence of “LatitudeLongitude” or “XYPosition” elements that define geographic

positions that make up the route and an optional element from the VerticalBlockElements

group that describes the route’s depth or altitude requirements. It is permissible in AVCL

to define the geography of a route without vertical restrictions or vice versa. In fact, it is

syntactically valid for a routeElementType element to contain neither geographic points

nor vertical requirements, however, this is not useful in practice.

284

Figure A.15. An AVCL Element for Defining a Declarative Agenda Consisting of High-

Level Goals that are to be Accomplished over the Course of a Mission

Figure A.16. AVCL Complex Types Used to Define Routes and Areas that can Include

Altitude or Depth Components

Also depicted in Figure A.16 is the AVCL areaElementType content

model. This element is used to define all avoid areas and operating areas associated with

285

an AVCL agenda. An areaElementType element has a required child element from the

AreaElements group that defines the geographic dimensions of the area. Additionally,

the element has an optional element from the verticalBlockElements group that defines

the depth or altitude dimensions of the area. If this element is omitted, the area’s vertical

dimensions are unbounded.

c. Goal Definition

An individual goal of an agenda mission are defined with a “Goal”

element of the type depicted in Figure A.17. Among all of the AVCL elements and

complex types, the agendaGoalElementType is the only one for which the “id” attribute

is required. This allows goals to refer to one another using the “nextOnSucceed” and

“nextOnFail” attributes (xsd:IDREF) which are used to define goal sequencing. The goal

referred to by the “nextOnSucceed” attribute is to be executed next if the referring goal is

completed successfully while the goal referred to by the “nextOnFail” attribute is to be

executed next if the goal fails. The remaining attribute that is unique to the

agendaGoalElementType is the “alert” element (xsd:boolean). If the “alert” element

value is “true,” the vehicle is to proceed to the area and wait until directed to commence.

If the value is “false,” the vehicle is to commence goal execution immediately upon

arriving in the operating area.

The first child of a “Goal” element is a member of the GoalElements

group and identifies the type of goal and all of the type-specific requirements. The

content models of this group will be discussed shortly. The second child element is an

areaElementType “OperatingArea” element defining the area in which the goal is to be

accomplished. The next child element is either a “Duration” or “Timing” element. A

“Duration” element (positiveScalarElementType) is used to specify the amount of time

(seconds) the goal has to succeed following commencement. A “Timing” element, on the

other hand, has “start” and “stop” attributes (both positiveScalarType) that specify the

goal start and end times (seconds from mission commencement). The final child

elements are zero or more “ReportingCriteria” elements that specify the conditions under

which the vehicle is make reports during goal execution. A “ReportingCriteria” element

has a “value” attribute of reportingCriteriaType, and an optional periodicity attribute

(positiveScalarType) that is relevant only when the “value” attribute is set to “periodic.”

286

Figure A.17. An AVCL Element for Defining Individual Goals of a Declarative Agenda

Mission

AVCL provides for specifying 12 types of goals that are defined using

elements (naming matches the goal type): Attack, Decontaminate, Demolish,

IlluminateArea, Jam, MarkTarget, MonitorTransmissions, Patrol, Rendezvous,

Reposition, SampleEnvironment and Search. The content models of the AVCL elements

used for specifying each of these is depicted in Figure A.18, and the attributes associated

with each of these elements is described in Table A.14. The following paragraphs

describe the semantics of the various goal types. Generally speaking, a goal is considered

successful if it is specified as an alert and no execute order is received before the goal

287

times out, and unsuccessful if the vehicle fails to reach the operating area in time (by the

designated start time or the end of the goal duration). Further conditions for goal success

or failure are type-specific.

An Attack goal is used to direct the vehicle utilize weapons to engage

targets within the operating area. An “Attack” element has zero or more “Target” child

elements that identify the target types (omission indicates that vehicle defaults dictate

targets). An Attack goal is considered successful if the “singleTarget” attribute has a

value of “true” and a target is successfully engaged, or following goal time-out if at least

one successful engagement was conducted.

Figure A.18. AVCL Element Content Models for Specifying Goals of a Declarative

Agenda Mission

288

Element Attribute Type Use Description

weaponStatus weaponStatusType
optional
(default
"tight")

Specifies conditions under
which targets can be
engaged. Attack

singleTarget xsd:boolean
optional
(default
"false")

Set to "true" if there are
potentially multiple targets.

Demolish singleTarget xsd:boolean
optional
(default
"false")

Set to "true" if there are
potentially multiple targets.

Rendezvous targetVehicleID xsd:string required Identifies the vehicle that is
to be rendezvoused with.

datumType datumTypeType required
Specifies whether the
search is to be point or area
focused.

requiredPD percentType required
Specifies the required
probability of detection of
the search.

Search

singleTarget xsd:boolean
optional
(default
"false")

Set to "true" if there are
potentially multiple targets.

Target name xsd:string required
Identifies a target type for
attack, demolition, or
search.

Contaminant type contaminantType required Identifies a contaminant
type.

minFrequency positiveScalarType required
A minimum frequency of a
monitoring or jamming
range.

maxFrequency positiveScalarType required
A maximum frequency of a
monitoring or jamming
range.

FrequencyRange

units frequencyUnitType optional
(default “Hz”)

Wavelength units of the
max and min frequencies.

Illuminator type illuminatorType required Type of light source to use
for area illumination.

IlluminatorCharacteristic value xsd:string required A arbitrary characteristic of
an illuminator

Marker type markerType required Specifies a laser or smoke
marker.

MarkerCharacteristic value xsd:string required
Specifies a marker
characteristic for a Mark
goal.

Qualifier value xsd:string required
Amplifying information
about a Patrol or
Rendezvous goal.

Table A.14. Attributes of AVCL Elements Used to Define Goals in a Declarative Agenda

A Decontaminate goal directs the vehicle to remove specified

contaminants from the operating area. The types of contaminants to be removed are

specified using one or more “Contaminant” child elements. A Decontaminate goal is

considered successful if the vehicle completes an area-wide environmental-sampling

289

pattern the entire area and removes any contaminants that are detected. It is considered

unsuccessful if it fails to sample the entire area within the allotted time or is unable to

remove a detected contaminant.

A Demolish goal is similar to an Attack goal except that it does not

contain a “weaponStatus” element. It is used to direct the vehicle to physically destroy

one or more targets within the operating area. It is used instead of an Attack goal for

targets for which a weapons status is not appropriate (i.e., targets that are not classifiable

as “hostile” or “friendly” such as a building).

An IlluminateArea goal directs the vehicle to provide light illumination to

an area. The type of illumination is specified with the “Illuminator” child element which

call calls for floodlight, spotlight, or pyrotechnic illumination. The goal is considered

successful if the vehicle provides illumination over the required time period.

A Jam goal directs the vehicle to prevent the use of radar or

communications within the operating area on the frequencies specified by one or more

“FrequencyRange” elements. The goal is considered successful if the all targeted

emissions during the specified period are jammed.

A MarkTarget goal directs the vehicle to provide a marking for one or

more specified targets. A “Marker” child element is used to specify the type of marker

that is to be used (laser, smoke, or dye marker) and the “Marker” element can be further

qualified with one or more “MarkerCharacteristic” elements. The types of targets to be

marked are specified using one or more “Target” elements. A MarkTarget goal is

considered successful if at least one target is identified and marked before the goal times

out (laser marking requires that the laser remain trained on the target until the goal end

time).

A MonitorTransmissions goal directs the vehicle to monitor electronic

emissions in specified frequency ranges (communications and / or radar). Ranges to be

monitored are specified using zero or more “FrequencyRange” elements with a content

model identical to that of the element used in Jam goal definitions. If no frequency

ranges are specified, all electronic emissions are to be monitored. A

290

MonitorTransmissions goal is considered successful if the vehicle is on station with an

operational receiver for the prescribed period whether transmissions are detected or not.

A Patrol goal requires the vehicle to wander over the operating area

making observations for the specified time. The specific objectives of the goal (e.g.,

noting vehicular activity, changing environmental characteristics, etc.) are defined using

zero or more “Qualifier” elements. A Patrol goal is considered successful if the vehicle is

within the operating area with functional mission systems for the required period whether

any activity of note is observed or not.

A Rendezvous goal directs the vehicle to proceed to the operating area and

make contact with another vehicle (specified with a “targetVehicleID” attribute).

Additional rendezvous requirements are defined using zero or more “Qualifier” child

elements. A rendezvous goal succeeds only if the target vehicle is contacted.

A Reposition goal causes the vehicle to transition from one geographic

area to another. A “Reposition” element contains an optional “Routing” child element

complying with the content model of the “IngressRouting” and “EgressRouting”

elements. This element defines en route altitude or depth restrictions or geographic

points that the vehicle is to use as intermediate waypoints during the transit to the

operating area. A Reposition goal is considered successful if the vehicle enters the

operating area before the goal times out. If the operating area is specified as a point, the

goal will succeed if the vehicle gets within the capture radius.

A SampleEnvironment goal directs the vehicle to test the operating area

environment for contaminants or environmental conditions. Contaminants are specified

with zero or more “Contaminant” child elements. If no “Contaminant” elements are

used, the vehicle is to record the environmental conditions of the area (e.g., temperature,

salinity, etc.). A SampleEnvironment goal succeeds only if the entire area is sampled

within the specified time, however, actual detection of contaminants is not required.

A Search goal directs the vehicle to conduct a search of the operating area

using all available sensors. The “requiredPD” and “datumType” attributes specify the

required probability of detection of the search and whether the search is to focus on the

centroid of the area or cover the entire area equally. An optional “singleTarget” (default

291

of “false”) attribute specifies whether or not there is a possibility of multiple targets. The

search objectives are specified using zero or more “Target” child elements. If no

“Target” elements are utilized, the vehicle defaults determine the search objectives. A

Search goal with a “singleTarget” attribute value of “true” succeeds immediately if the

search objective is located. If the “singleTarget” attribute is “false,” the goal will succeed

if the entire operating area is searched regardless of the number of objectives located.

F. MISSION RESULTS

1. Overview

Like mission definitions, mission results are encoded in an AVCL document with

an “AVCL” root element. Results data is contained in “MissionLog” and

“MissionResults” elements that follow the “MissionPreparation” element as depicted in

Figure A.5. The “MissionLog” element contains discrete events that might occur

arbitrarily over the course of the mission. The “MissionResults” element, on the other

hand, contains sampled vehicle state information (i.e., telemetry and control orders) from

various points in the mission. Examples include target detections, message receipts and

transmissions, and behavior activations. The content of these two elements is discussed

in the following sections.

2. Discrete Event Logging
The “MissionLog” element contains a sequence of zero or more “UUVEvent,”

“UGVEvent,” “USVEvent” or “UAVEvent” elements (element name corresponds to the

vehicle type), each containing a single child element corresponding to an event. Unlike

other AVCL elements, the “timeStamp” attribute of each of these elements is required in

order to facilitate post-mission data analysis. Acceptable child elements include task-

level behaviors appropriate for the vehicle-type (to facilitate a behavior-activation

timeline) and inter-vehicle messages (described in Section G) as a means of recording

message receipt and transmission activity. Additionally, the five elements depicted in

Figure A.19 are available to log other potential events of interest (particularly those

relating to the accomplishment of declarative mission goals).

AVCL “Contact” elements describe targets that are detected or tracked over the

course of a mission. Content includes required “name” and “contactID” attributes

(xsd:string and positiveIntType respectively) identifying the contact. The “contactID”

292

attribute is intended to uniquely identify a particular target, so multiple “Contact”

elements with the same “contactID” value refer to the same actual contact. Child

elements include a required element from the AbsoluteHorizontalPositionElements group

and an optional element from the VerticalBlockElements group that describe the

contact’s location at time it is logged. Additional optional elements include “Heading”

(headingElementType) and “Velocity” (nonNegativeScalarElementType) elements that

describe the vehicle’s motion when the event is logged.

A “Contaminant” element records information about a chemical, radiological,

biological or other contamination detected by the vehicle. A required “contaminant”

attribute (contaminantType) identifies the type of contamination that was detected. A

required element from the AbsoluteHorizontalPositionElements group and an optional

element from the VerticalBlockElements group describe the location of the detection.

Figure A.19. AVCL Elements Used for Logging Asynchronous Discrete Events

293

A “SignalOfInterest” element documents the detection of electronic or acoustic

transmissions. Required “frequency” (positiveScalarType) and optional “units” attributes

(frequencyUnitType, default “Hz”) specify the transmission that was detected. An

optional “content” element is available to include transmission content if required.

The “GoalStatus” element provides documentation of declarative agenda mission

goal execution progress. A required “goal” attribute (xsd:IDREF) refers to the agenda

goal and a required “status” attribute (xsd:string) contains a free-text description of the

status change (e.g., “commence,” “succeed,” “fail” or “in operating area”).

Semantically similar to the “GoalStatus” element, the “VehicleStatus” element

documents changes to the status of vehicle systems. Required “system” and “status”

attributes (both xsd:string) identify the system in question and describe the nature of the

status change (e.g., “shut down” or “low power due to overheating”).

3. Sampled Continuous Data
The “MissionResults element has two potential child elements. The first is an

optional “MissionStartTime” element that contains “day” (calendarDaysType), “year”

(positiveIntType), “month” (monthsType), “hour” (clockHoursType), “minute”

(clockMinutesOrSecondsType), “second” (clockMinutesOrSecondsType), and

“timeZone” (timeZoneType) attributes.

Following the “MissionStartTime” element (if present), are zero or more

“SampledResults” elements containing sampled telemetry or control order information.

As depicted in Figure A.20, this element contains a vehicle-type-specific telemetry

element and / or a vehicle-type-specific control orders element.

Figure A.20. An AVCL Element for Recording Vehicle Telemetry and Control Orders

294

Figure A.21. AVCL Elements for Sampled Vehicle Telemetry

The content models of the vehicle-specific control-order elements are depicted in

Figure A.22. As with telemetry elements, all child elements of vehicle-specific any

control-order element is optional to allow for encoding arbitrary partial control-order

content. The most complex content model is associated with UAVs to facilitate the

element’s use to encode control orders for both fixed-wing and rotary-wing UAVs. At

the time of this writing, the content model for the “UGVControlOrder” element is still

being developed. The attributes associated with all potential control-order element child

elements are described in Table A.15.

295

Figure A.22. AVCL Elements for Sampled Vehicle Control Orders or Settings

G. INTER-VEHICLE MESSAGING

1. Overview

Inter-vehicle messages encoded in AVCL are contained in documents with an

“AVCLMessage” or “AVCLMessageList” root element. With the exception of the

specific contents of the “body” child element (which contains one or more

“AVCLMessage” elements), the content model of documents with an

“AVCLMessageList” root element was discussed in Section D of this appendix. On the

other hand, the content model of documents with an “AVCLMessage” root element was

not discussed beyond the required “head” and “body” child elements. Thus, the

remainder of this section focuses on the content model of these AVCL message

components.

296

Element Attribute Type Use Description

port signedPercentType Optional Percentage of available power ordered to the port
propeller.

starboard signedPercentType Optional Percentage of available power ordered to the
starboard propeller.

Propellers

centerline signedPercentType Optional percentage of available power ordered to the
centerline propeller.

Rudder value signedPercentType Required Ordered percentage of available rudder deflection
(positive leading edge right).

stern signedPercentType Optional Ordered percentage of available bow-plane
deflection (positive leading edge up).

Planes
bow signedPercentType Optional Ordered percentage of available stern-plane

deflection.

bowLateral signedPercentType Optional Percentage of available power ordered to the bow
lateral cross-body thruster (positive pushes right).

sternLateral signedPercentType Optional Percentage of available power ordered to the
stern lateral cross-body thruster.

bowVertical signedPercentType Optional
Percentage of available power ordered to the bow
vertical cross-body thruster (positive pushes
down).

BodyThrusters

sternVertical signedPercentType Optional Percentage of available power ordered to the
stern vertical cross-body thruster.

engine1 percentType Required Percentage of available power ordered to the
number 1 (or only) engine of a UAV.

Engines
engine2 percentType Optional Percentage of available power ordered to the

number 2 engine of a UAV.

Aileron value signedPercentType Required Ordered percentage of available aileron deflection
(positive induces right roll).

port signedPercentType Required Ordered percentage of available port elevator or
stabilator deflection (positive leading edge up).

Elevator

starboard signedPercentType Required Ordered percentage of available starboard
elevator or stabilator deflection.

Collective value percentType Required Ordered percentage of available collective
(power) for a rotary wing UAV.

longitudinal signedPercentType Required Ordered percentage of fore-aft cyclic (positive
forward) for a rotary wing UAV.

Cyclic
lateral signedPercentType Required Ordered percentage of left-right cyclic (positive

right) for a rotary wing UAV.

Pedals value signedPercentType Required Ordered percentage of available tail-rotor
authority (positive right) for a rotary wing UAV.

Table A.15. Attributes Associated with AVCL Vehicle-Specific Control-Order Elements

297

2. The AVCL Message Header

The “head” child of an “AVCLMessage” element contains the message header

and complies with the content model depicted in Figure A.23. Zero or more “meta”

elements (complying with the content model of previously discussed “meta” and

“MetaCommand” elements) provide arbitrary descriptive information about the message.

An optional “Priority” element (priorityElementType) specifies the importance of the

message. If this element is omitted, the message is assumed to be of routine priority. A

“Sender” element (positiveIntegerElementType) identifies the vehicle from which the

message originates. Zero or more nonNegativeIntegerElementType “Recipient” elements

identify the vehicles to which the message is being transmitted. A “value” attribute of

“0” in a “Recipient” element identifies a broadcast message that provides information of

potentially global interest. Finally, an optional acknowledgeElementType

“Acknowledge” element specifies the receiving vehicles’ acknowledgement

requirements. Omission of the “Acknowledge” element indicates that the message does

not require acknowledgement.

Figure A.23. Content Model of the AVCL Message Header

3. The AVCL Message Body

The content model of the AVCL message “body” element consists of a single

child element from the choices depicted in Figure A.24. This element contains the

298

information that is to be conveyed by the inter-vehicle message. The specific content

models of the individual child elements have been discussed previously in various

portions of this appendix, so the intent of the remainder of this section focuses on the

semantics of the various potential child elements.

Figure A.24. The AVCL Message “body” Element Content Model

An element from the MissionSpecification group (“UUVCommandScript,”

“UGVCommandScript,” “USVCommandScript,” “UAVCommandScript,” or

“AgendaMission”) directs the recipient vehicle to execute the contained task-level

behavior script of agenda mission. Similarly, a vehicle-type-specific command element

299

(e.g., “UUVCommand”) containing a single task-level behavior requests that the

recipient activate the contained behavior. In both cases, the receiving vehicle is required

to comply with the request only if able to do so and only if the sending vehicle has the

authority to direct the activity.

As the name implies, a message body containing an “InformationRequest”

element requests information from the receiving vehicle rather than activity. The type of

information requested is identified with a required informationRequestType “value”

element. Unlike the mission-execution or behavior-request messages, a vehicle receiving

an information request message is to provide the requested information if able regardless

of the authority of the sending vehicle.

The final request-type message per (FIPA, 02) in the AVCL vocabulary uses a

“GroupMaintenance” element with a required “request” attribute

(groupMaintenanceType). The response to a group maintenance message is currently

under development, but is expected to be along the lines of the protocols described and

proposed by CoDA project in (Chappell, et al., 97) and (Turner and Turner, 04).

Inform messages include those conveying vehicle characteristics, vehicle state

and events of interest. Vehicle characteristics are provided in messages with a

“UUVCharacteristics,” “UGVCharacteristics,” “USVCharacteristics,” or

“UAVCharacteristics” element with the same content model as the vehicle-characteristics

child element used in the “MissionPreparation” element (Figure A.6). A “VehicleState”

element complies with the content model of the “SampledResults” element depicted in

Figure A.20 and provides information about the sending vehicle’s current telemetry or

control status. Finally, the content models of the “UUVEvent,” “UGVEvent,”

“UGVEvent” or “UAVEvent” elements are identical to the same-named child elements

of the “EventLog” element discussed in Section A. and convey information about

asynchronous events that occur over the course of a mission.

300

THIS PAGE INTENTIONALLY LEFT BLANK

301

APPENDIX B: THE AUTONOMOUS AND UNMANNED VEHICLE
WORKBENCH (AUVW)

A. INTRODUCTION

The AUVW is an ongoing NPS project aimed at addressing the paucity of

vehicle-independent planning systems. Designed around the functionality provided by

AVCL, the AUVW is a Java application for UAV, USV, UGV and UUV mission-

planning, mission-rehearsal and mission-playback. Features include a geographically

synchronized two-dimensional graphical user interface for mission development and

editing, physics-in-the-loop mission rehearsal using six-degree-of-freedom models, two-

dimensional and three-dimensional visualization of mission progress, import and export

of vehicle-specific data, and networked communication between the AUVW and vehicles

before, during and after mission execution.

AUVW features utilize the Java Look + Feel guidelines to achieve cross-platform

compatibility. Additionally, the JavaHelp system has been utilized to provide extensive

documentation in a context-sensitive manner throughout the workbench toolbars and

buttons. Details of the initial AUVW implementation and capabilities are documented

extensively in (Lee, 04). Additional functionality is discussed in (Davis and Brutzman,

05). This appendix summarizes relevant portions of these documents and provides an

overview of updated AUVW features as well. Topics include an overview of AUVW

mission-planning functionality, mission-rehearsal capability, the use of X3D graphics and

the DIS protocol to support visualization, and components supporting operation and

interaction with actual vehicles and operators.

B. SCRIPTED MISSION PLANNING AND EDITING
The AUVW supports development of scripted autonomous vehicle missions using

AVCL task-level behaviors. Multiple graphical user interface displays are provided that

allow for adding new task-level behaviors to a script and editing existing behaviors.

Additionally, the editor supports simultaneous testing and editing of multiple missions.

An example of this functionality is depicted in Figure B.1.

The AUVW provides three behavior-level display formats for viewing AVCL

task-level script missions, two of which are depicted in Figure B.2. The view providing

302

the most editing functionality is the icon view which uses a list of icon / name pairs to

graphically depict the task-level script. Individual behaviors can be added to the end of

the mission or inserted anywhere in the mission using either a pulldown or a popup menu.

Behavior-type-specific dialog boxes similar to the one depicted in Figure B.3 are used to

edit individual commands. These dialog boxes are activated via the same menus or by

double-clicking the command in the icon list. Individual commands can be deleted,

copied, or moved to new locations in the script using pulldown or popup menus or user-

specified hot keys. Additionally, the popup and pulldown menus provide the capability

to add general mission metadata or set the mission’s geographic origin (i.e., the

geographic position of the origin of the earth-fixed Cartesian coordinate system utilized

throughout the mission file).

Figure B.1. Screen Snapshot of the AUVW being used to Simultaneously Edit Scripted

UAV, USV and UUV Missions (From: Davis and Brutzman, 05)

303

Figure B.2. AUVW Icon and Tree Views of an AVCL Task-Level Behavior Script

Figure B.3. AUVW Dialog Box for Editing UUV Waypoint Behaviors

(From: Davis and Brutzman, 05)

304

Although capable of accessing all AUVW task-level mission editing functions,

the icon view does not depict the full AVCL document. Header information, metadata,

and mission-results elements, for instance, are not displayed. The tree and text views,

however, can be utilized to view portions of the AVCL document not accessible from the

icon view. An example of an AVCL task-level behavior script in the tree view is

depicted in Figure B.2. In the present AUVW implementation, the tree and text views

cannot be used for script editing.

While the icon, tree and text views provide the capability to view and edit all

portions of an AVCL task-level behavior script, a geographic interface is a potentially

more intuitive means of generating and editing autonomous vehicle missions. The

AUVW, therefore, provides multiple two-dimensional interfaces that complement the

functionality of the other display methods. The first displays the mission tracks of

currently loaded missions on a Cartesian grid with the positive-X axis oriented true north

and the positive-Y axis oriented true east. Locations can be entered using Cartesian

coordinates that are plotted directly on the two-dimensional display or latitude and

longitude which are converted to Cartesian coordinates based on the user-defined

geographic origin.

Figure B.4, provides the two-dimensional mission view corresponding to the icon

and tree views of Figure B.2. A number of behaviors (i.e., Thrusters, MakeKnots,

SendMessage and SetPower) that are depicted in the icon and tree views are not depicted

in the two-dimensional view. Unlike the icon, tree, and text views, the two-dimensional

planner does not display all AVCL task-level commands in the mission, but only those

task-level behaviors possessing a geographic component (CompositeWaypoint, Hover,

Loiter, SetPosition, and Waypoint), so full mission editing capability is not provided

from the two-dimensional view. Nevertheless, these are among the most common

behaviors utilized in autonomous vehicle missions, so most mission editing requirements

can be accessed using the two-dimensional editor. Drag and drop, snap to grid, click to

highlight, and double-click to edit features support precise graphical-user-interface-based

modification of existing behaviors. In particular, the pulldown menu functionality to

insert new commands (including those not visible in the two-dimensional display), copy,

305

move, edit or delete existing commands, add metadata or set the mission’s geographic

origin provide a robust task-level mission editing capability.

Figure B.4. The AVCL Task-Level Behavior Script Corresponding to Figure B.2

Depicted in the AUVW Two-Dimensional Cartesian Coordinate-Based
Editing Interface (From: Davis and Brutzman, 05)

The final mission-editing display available in the AUVW is the geographically-

based OpenMapTM editor, an exemplar view of which is provided in Figure B.5.

OpenMapTM is an open source Java API for handling geospatial data and digital map data

(BBN, 01). The AUVW utilizes U.S. Census Bureau Census 2000 Tiger/Line data in

shapefile format (ESRI, 98) and Digital Nautical Charts to enable users to plan missions

for a specific geographic area. OpenMapTM allows the user to selectively enable and

306

disable dataset layers, so the display can be manipulated to include as much or as little

geographic information as desired.

Figure B.5. UUV and UAV Task-Level Behavior Scripts Depicted in the OpenMapTM

Editing Interface (From: Davis and Brutzman, 05)

As with the two-dimensional editor, only those task-level behaviors having a

geographic component are overlaid in the OpenMapTM editor. Still under development,

the OpenMapTM editor provides only limited mission editing capability when compared

with other AUVW modes. At present, physical manipulation of task-level missions using

the OpenMapTM editor is limited to drag and drop repositioning of individual behavior

locations. Additionally, all previously discussed pulldown menu functionality can be

accessed while using the OpenMapTM editor. Ultimately, it is envisioned that this editor

will closely mirror, and possibly replace, the current AUVW 2two-dimensional planner.

C. DECLARATIVE MISSION PLANNING AND EDITING
Declarative mission editing is a fairly new addition to the AUVW and relies on

the same or similar editing interfaces as scripted missions. The two-dimensional editor is

307

available for viewing the layout of declarative missions as depicted in Figure B.6.

Operating areas are displayed using translucent two-dimensional shapes while avoid

areas are displayed using more opaque shapes. Launch and recovery positions (if

specified) are depicted as points labeled “L” or “R” respectively. Declarative mission

editing is not available through the two-dimensional display, although display-specific

functionality (e.g., zoom) is available via popup menu. Additionally, OpenMapTM editor

functionality has not yet been updated to incorporate declarative mission visualization.

Figure B.6. An AVCL Declarative Agenda Displayed in the AUVW Two-Dimensional

and Icon Views

Editing of declarative AVCL missions is conducted using an icon view specific to

these types of missions (also depicted in Figure B.6). The declarative mission icon view

includes entries for launch and recovery positions, goals, and avoid areas. Entries can be

308

added to the mission using pulldown or popup menus, and existing entries can be edited

by double-clicking the entry of interest. As with the icon view associated with task-level

behavior scripts, popup and pulldown menus provide the capability to add general

mission metadata or set the mission’s geographic origin. Additionally, the tree and text

views are available when editing declarative missions as well.

Double-clicking an existing goal for editing or utilizing the pulldown or popup

menu to create a new goal will activate the dialog box depicted in Figure B.7. This

dialog box is used to specify all goal parameters including operating area, goal-type,

goal-type-specific parameters, timing requirements, and follow-on goals upon success or

failure. Similar dialog boxes are provided for creating and editing declarative mission

launch and recovery positions and avoid areas.

Figure B.7. An AUVW Dialog Box for Editing a Declarative Mission Goals

309

D. MISSION REHEARSAL

1. Simulation in the AUVW

Among the most important capabilities of the AUVW is the ability to realistically

rehearse both scripted and declarative missions in a virtual environment. Mission

rehearsal utilizes physically-based models that accurately represent the vehicles for which

the missions are being designed. At present, UUV, USV and UAV models are

implemented. Model descriptions can be found in (Brutzman, 94), (Cooke, et al., 92) and

in Chapter VIII of this dissertation. All simultaneous simulated missions run in the same

virtual environment enabling the operator to determine the effectiveness of multi-vehicle

plans.

Simulations can be constrained to run in real time or accelerated to improve

performance. During faster-than-real-time simulations involving multiple vehicles,

synchronization is maintained by consistently matching all vehicle speedup factors (e.g.,

50 times real time). In this way synchronization can be maintained not only among

vehicle simulations running within a single AUVW session, but among those spawned by

other, possibly distributed, AUVW instances as well.

2. Environmental Modeling
Proper modeling of environmental factors can produce major changes in sensor

propagation, vehicle buoyancy, vehicle control and predicted power consumption.

Therefore, multiple environmental datasets and services are being connected to the

AUVW in order to maximize the real-world physics modeling capability for mission

rehearsal and mission evaluation.

The AUVW includes the ability to read supercomputer-generated Network

Common Data Form (Rew, et al., 05) datasets which include four-dimensional (x y z t)

gridded time series of ocean parameters such as sound speed profile, local ocean current

and wind speed. Similar real-time oceanographic parameters are also available via XML-

based mechanisms including web-service queries to Fleet Numerical Meteorological

Oceanographic Center computers assets.

3. Visualization

The AUVW supports three-dimensional visualization of mission progress during

mission rehearsal and playback through the use of X3D—an International Organization

310

for Standards (ISO) standardized format for web-capable three-dimensional graphics. It

utilizes an XML-enabled file format to facilitate the transfer of three-dimensional

graphics data across networked applications. Significantly more robust than its web-

capable three-dimensional predecessor, the Virtual Reality Modeling Language, X3D

includes implicit support for DIS networking and incorporates a rigorously defined Scene

Access Interface making it well-suited for use in the AUVW.

X3D-based three-dimensional visualization is implemented in the AUVW with

the Xj3D toolkit (Hudson, 04). Xj3D is an open source API produced by Yumetech, Inc.

for developing applications utilizing X3D content. Implemented with the support of the

Web3D Consortium as an exemplar X3D-compliant browser, Xj3D implements most

aspects of the interchange, interactive and immersive X3D profiles (ISO and IEC, 04) as

well as a number of proposed extensions to the ISO standard. Figure B.8 shows the

AUVW Xj3D viewer being used to monitor the operations of multiple UUVs in a virtual

environment incorporating bathymetry and cartography near Panama City, Florida.

Figure B.8. ARIES and Seahorse UUVs Operating in the Same Virtual Environment as

Seen in the AUVW Xj3D Viewer (From: Davis and Brutzman, 05)

A number of vehicle and virtual environment models are included in the AUVW

distribution. In addition, approximately 1000 models including vehicles, structures,

sensors, terrain and even entire scenarios are available for unencumbered individual

311

government and corporate use in the Scenario Authoring and Visualization for Advanced

Graphical Environments online archive (available at https://savage.nps.edu/Savage/). A

number of authoring tools are also available that facilitate the use of these and other

models. Thus, the development of large virtual environments remains time consuming,

but is becoming a more straightforward process. When coupled with the potential

autogeneration of significant virtual environment content, the rapid creation of realistic

virtual environments to rehearse and visualize real-world operations of arbitrary

autonomous vehicles is becoming an achievable goal.

4. The X3D Scene Access Interface
Among the most important Xj3D features is implementation of the X3D Scene

Access Interface—a portion of the X3D specification that provides for programmatic

access to a loaded scene graph. Within the AUVW, the Scene Access Interface enables

dynamic generation of X3D content for addition to the existing virtual environment as

well as the manipulation of existing content

The first implemented AUVW dynamic generation of content using the Scene

Access Interface takes the form of mission-path trackline addition to the scene. Mission

tracks are automatically created based on the content of the activated AVCL mission

using X3D indexed line sets and billboards when the mission is loaded for rehearsal.

This X3D content corresponding to a mission’s path is generated by applying an XSLT

stylesheet to the AVCL document as described in the next section. The resultant X3D is

then added to the current virtual environment scene graph using the X3D Scene Access

Interface. If the mission is subsequently edited and rerun, the previously generated

content is removed from the scene graph and replaced with updated content.

A second use of the Scene Access Interface for manipulation of the AUVW

virtual environment is its use for sensor modeling. The virtual environment contains all

of the objects with which the autonomous vehicles are intended to interact during mission

rehearsal and playback. Enough information is therefore contained in the scene graph for

vehicles operating in the virtual environment to model various sensors through the use of

collision detection and picking. (Davis, 96) documented the use of C++ and the Open

InventorTM SoRayPickAction (OIAG, 94) to model mechanically steered narrow-beam

active sonars installed on the NPS Phoenix UUV. Unfortunately, the X3D specification

312

does not support general collision detection along required for ray-picking operations.

Xj3D, however, implements a proposed formal extension to the X3D specification that

supports various forms of picking suitable for sensor modeling (Yumetech, 04).

Specifically, the AUVW uses the Xj3D PrimitivePicker node to obtain the functionality

provided by the Open InventorTM SoRayPickAction. Individual nodes are created and

added to the virtual environment using the Scene Access Interface upon the request of

individual vehicle instances. Each vehicle can manipulate pickers via the Scene Access

Interface as required to model onboard sensors. Individual sensors can be modeled with

single picker nodes (as depicted in Figure B.9) or multiple nodes depending on sensor

characteristics. Currently implemented vehicles use this functionality to model

fathometers, sonar and radar altimeters, and ranging sonars.

Figure B.9. Sensor Modeling using the X3D Scene Graph and Xj3D Picking Nodes

(From: Davis and Brutzman, 05)

5. Distributed Interactive Simulation (DIS)
Vehicle position in the virtual environment is maintained through the use of DIS

updates with individuals periodically transmitting multicast entity state protocol data

units. Explicitly supported by X3D, entity state protocol data units are transmitted using

313

multicast and provide a means of simultaneously updating multiple views into a common

virtual environment. This inherently supports the use of multiple AUVW instances in a

networked environment to provide for planning and rehearsal of multi-vehicle missions

from different locations by synchronizing the virtual environment across the network.A

recent addition to the AUVW is support for DIS XML. This addition uses an Extensible

Messaging and Presence Protocol (XMPP) channel to exchange entity state protocol data

units encoded with XML (McGregor, et al., 06). An Xj3D browser extension provides

direct access to the XMPP channel from within the X3D scene graph and automatic

monitoring of DIS XML packets. Additional XMPP support provides AUVW user

access to chat rooms through which DIS XML protocol data units pass.

DIS support highlights an additional planned use of the Scene Access Interface:

DIS entity monitoring to support automatic addition of applicable vehicle models to the

scene graph. When a protocol data unit is received, its content can be analyzed to

determine whether or not its model is already contained in the virtual environment’s

scene graph. If not, the protocol data unit’s siteID, applicationID, entityID and marking

fields provide enough information to uniquely identify the type of vehicle. With this

information, an instance of the appropriate vehicle that will correctly respond to

subsequent entity state protocol data units can be created or loaded dynamically and

inserted into the virtual environment scene graph.

E. VEHICLE SUPPORT

1. Data Format Conversion
The AUVW provides for the automated generation of vehicle-specific missions

from task-level behavior scripts with XSLT stylesheets as described in Chapter V. The

AUVW conducts XSLT transformations using the Xalan-Java API, an open source

product of the Apache XML Project (Apache, 06). The graphical user interface panel of

Figure B.10 (activated via pulldown menu) is used to initiate the transformation of stored

or loaded task-level behavior scripts as required.

The AUVW also allows the import of vehicle-specific missions through context-

free-grammar-based conversion to task-level behavior scripts as described in Chapter V.

This functionality is accessed via a pulldown menu providing for selection of the name

and vehicle-specific format of import file. As of this writing, mission import and export

314

support is provided for the NPS Phoenix and ARIES UUVs, the Naval Oceanographic

Office Seahorse UUV, the Hydroid REMUS UUV and the JAUS message set.

Figure B.10. Support for Automated Conversion of Task-Level Behavior Scripts to

Vehicle-Specific Formats Using XSLT Stylesheets
(From: Davis and Brutzman, 05)

2. Communications

All phases of autonomous vehicle operations generally require some level of

communication between vehicles and operators. During the pre-mission phase, the

operator must be able to initialize the vehicle and load and initiate missions. During

mission execution, many vehicles are able to provide position and status reports or

receive updated tasking. Following execution, mission results must be downloaded from

the vehicle to offboard systems for analysis and archiving. The AUVW has a number of

communications capabilities implemented or planned to support these requirements.

Communications involving autonomous vehicles routinely utilize acoustic

modems or other devices relying on serial communications. The AUVW implements

user-configurable serial communications and Kermit protocol file transfer appropriate for

point-to-point communications between the AUVW and a variety of devices. Also slated

for implementation are File Transfer Protocol, Secure File Transfer Protocol, Terminal

Emulation and Secure Shell facilities that will improve the flexibility and efficiency of

communications between the AUVW and controlled vehicles that use Transmission

Control Protocol / Internet Protocol networking.

Collaboration support is provided through the implementation of XMPP-based

chat and Hypertext Transfer Protocol (HTTP) server support. XMPP-based chat provides

for real-time communication between distributed AUVW users and also provides

315

infrastructure for the transfer of DIS XML packets. HTTP support, on the other hand,

provides for data sharing between various locations.

F. AVAILABILITY AND DEVELOPMENT

Due to the consistent use of XML, Java and Java Look + Feel, the AUVW has

been successfully tested on Windows, MacOSX, Linux and Solaris systems. An online

autoinstaller is updated weekly, and installation Digital Versatile Discs (DVD) are

available on request.

Source code is available under an open source license that ensures unencumbered

use by individuals, government projects and industry. All source code, configuration

files and documentation are maintained under Concurrent Version System control,

allowing around-the –clock distributed development by qualified participants.

Additionally, an archived mailing list is used to discuss design issues and problem

resolution. Finally, the Bugzilla tracking system is used to resolve all problems and

precisely define new features. Each of these resources and additional documentation is

available online at https://www.movesinstitute.org/xmsf/xmsf.html#Projects-AUV.

316

THIS PAGE INTENTIONALLY LEFT BLANK

317

LIST OF REFERENCES

Abbott, I. H. and Von Doenhoff, A. E., Theory of Wing Sections, Dover Publications,
1959.

Ahner, D. K., “Planning and Control of Future Combat System UAVs,” 72nd Military
Operations Research Society Symposium, Unmanned Systems Working Group
Presentation, Monterey, California, June 2004.

Albus, J. S., “Task Decomposition,” Proceedings of the 8th IEEE International
Symposium on Intelligent Control, August 1993.

Albus, J. S., “A Reference Model Architecture for Intelligent Hybrid Control Systems,”
Proceedings of the 1996 Triennial World Congress, International Federation of
Automatic Control, July 1996.

Albus, J. S., “Engineering Intelligent Systems,” Proceedings of the ISIC/CIRA/ISAS 1998
Conference, September 1998.

Apache Software Foundation, Xalan-Java 2.7.0 Online Documentation, 2006. Available
at http://xml.apache.org/xalan-j/index.html. Accessed August 2006.

Arcineas, F., C++ XML, New Riders Publishing, 2002.

ASTM Work Item WK9139, Standard Guide for Unmanned Undersea Vehicle Mission
Payload Interface, expected publication in 2006.

BBN Technologies Solutions, LLC, OpenMap Viewer Application User’s Guide,
November 2001. Available at http://openmap.bbn.com/doc/user-guide.html. Accessed
August 2006.

Blidberg, D. R., “Generic Behaviors: Definition and Structure, an Approach to
Modularity in Intelligent System Control Architectures—Volume 1: Technical
Proposal,” Proposal for SOL BAA #94-19, July 21, 1994.

Bourg, D. M., Physics for Game Developers, O’Reilly and Associates, 2002.

Brutzman, D. P., A Virtual World for an Autonomous Underwater Vehicle, Ph.D. Thesis,
Department of Computer Science, Naval Postgraduate School, Monterey, California,
December 1994. Available at http://web.nps.navy.mil/~brutzman/dissertation. Accessed
August 2006.

Buzzell, C. M., A Common Control Language for Multiple Autonomous Undersea
Vehicle Cooperation, Master’s Thesis, University of Massachusetts Dartmouth, October
2004.

318

Byrnes, R. B., The Rational Behavior Model: A Multi-Paradigm, Tri-Level Software
Architecture for Control of Autonomous Vehicles, Ph.D. Dissertation, Department of
Computer Science, Naval Postgraduate School, Monterey, CA, March 1993. Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/dissertations.
Accessed August 2006.

Chappell, S. G., Turner, R. M., Turner, E. H. and Grunden, C., “Cooperative Behavior in
an Autonomous Oceanographic Sampling Network: MAUV Project Update,”
Proceedings of the 10th International Symposium on Unmanned Untethered Submersible
Technology, Durham, NH, September 1997.

Chief of Naval Operations (CNO), Navy Search and Rescue Tactical Information
Document (SAR TACAID), U.S. Navy Naval Warfare Publication (NWP) 3-22.5-SAR-
TAC, 1997.

Chief of Naval Operations, Integrating Unmanned Vehicles into Maritime Operations,
U.S. Navy Tactical Memorandum TM 3-22.5-SW, 2004.

Cooke, J. M., Zyda, M. J., Pratt, D. R. and McGhee, R. B., “NPSNET: Flight Simulation
Dynamic Modeling Using Quaternions,” Presence, v. 1, number 4, pp. 404-420, Fall
1992.

Corman, T. H., Leiserson, C., E. and Rivest, R. L., Introduction to Algorithms, McGraw-
Hill Book Company, 1990.

Crangle, C. and Suppes, P., Language and Learning for Robots, Center for the Study of
Language and Information Publishing, 1994.

Daconta, M. C., Obrst, L. J. and Smith, K. T., The Semantic Web, A Guide to the Future
of XML, Web Services, and Knowledge Management, Wiley Publishing, 2003.

Davis, D. T., Precision Maneuvering of the Phoenix Autonomous Underwater Vehicle for
Entering a Recovery Tube, Master’s Thesis, Department of Computer Science, Naval
Postgraduate School, Monterey, California, September 1996. Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/theses. Accessed
August 2006.

Davis, D. T., “Automated Parsing and Conversion of Vehicle-Specific Data into
Autonomous Vehicle Control Language using Context-Free Grammars and XML Data
Binding,” Proceedings of the 14th International Symposium on Unmanned Untethered
Submersible Technology, Durham, NH, August 2005. Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/papers. Accessed
August 2006.

319

Davis, D. T. and Brutzman, D. P., “The Autonomous and Unmanned Vehicle
Workbench: Mission Planning, Mission Rehearsal, and Mission Replay Tool for
Physics-Based X3D Visualization,” Proceedings of the 14th International Symposium on
Unmanned Untethered Submersible Technology, Durham, NH, August 2005. Available
at http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/papers. Accessed
August 2006.

Defense Advanced Research Projects Agency (DARPA) and Information Society
Technologies Programme (IST), DAML+OIL Language Specification, March 2001.
Available at http://www.daml.org/2001/03/daml+oil-index.html. Accessed August 2006.

Department of Defense (DOD) Joint Robotics Program (JRP), Fiscal Year 2005 Joint
Robotics Program Unmanned Ground Vehicle Master Plan, 2004. Available at
http://www.jointrobotics.com/activities_new/masterplan.shtml. Accessed August 2006.

Department of the Navy (DON), The Navy Unmanned Undersea Vehicle (UUV) Master
Plan, November 2004. Available at http://orionprogram.org/PDFs/UUV_USNavy.pdf.
Accessed August 2006.

Department of the Navy, Department of the Navy XML Naming and Design Rules,
Version 2.0. January 2005. Available at
http://www.doncio.navy.mil/StoreFront/Uploads/0128YRM15241.pdf. Accessed August
2006.

Dobeck, G., Cobb, T., Weilert, D., Bills, G., Smith, C., Bryan, J., Aridges, T., Fernandez,
M., Diany, C., Zurawski, B., and Bello, M., “Computer-Aided Detection Computer Aided
Classification (CAD/CAC),” ONR Joint Review of Technology Applicable to Mine
Countermeasures and Associated Missions, Panama City, Florida, February 2004.

Duarte, C. N., Martel, G. R., Eberbach, and E., Buzzell, C., “Talk Amongst Yourselves:
Getting Multiple Autonomous Vehicles to Cooperate,” Proceedings of the 2004
IEEE/OES Autonomous Underwater Vehicles Symposium, Sebasco, Maine, June 2004.

Duarte, C. N., Martel, G. R., Buzzell, C., Komerska, R., Mapparapu, S., Chapel, S.,
Blidberg, D. R. and Nitzel, R., “A Common Control Language To Support Multiple
Cooperating AUVs,” Proceedings of the 14th International Symposium on Unmanned
Untethered Submersible Technology, Durham, NH, August 2005.

Duckett, J., Griffin, O., Mohr, S., Norton, F., Stokes-Rees, I., Williams, K., Cagle, K.,
Ozu, N., and Tennison, J., Professional XML Schemas, Wrox Press, Ltd., 2001.

Eberbach, E., “$-Calculus Bounded Rationality = Process Algebra + Anytime
Algorithms,” Applicable Mathematics: Its Perspectives and Challenges, edited by Misra,
J., Narosa Publishing House, 2001.

320

Eberbach, E., “$-Calculus of Bounded Rational Agents: Flexible Optimization as Search
under Bounded Resources in Interactive Systems,” Fundamenta Informaticae, volume
68, IOS Press, 2005.

Environmental Systems Research Institute (ESRI) White Paper, “ESRI Shapefile
Technical Description,” July 1998. Available at
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf. Accessed August 2006.

Fensel, D., Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce, Springer-Verlag Publishing, 2001.

Ferguson, D. and Stentz, A., “The Delayed D* Algorithm for Efficient Path Replanning,”
Proceedings of the IEEE International Conference on Robotics and Automation,
Barcelona, Spain, 2005. Available at
http://gs2045.sp.cs.cmu.edu/downloads/Delayed-DStar.pdf. Accessed August 2006.

Foundation for Intelligent Physical Agents (FIPA), FIPA Communicative Act Library
Specification, December 2002. Available at
http://www.fipa.org/specs/fipa00037/SC00037J.html. Accessed August 2006.

Gottgtroy, P, Kasabov, N. and Macdonell, S., “An Ontology Engineering Approach for
Knowledge Discovery from Data in Evolving Domains,” Knowledge Engineering and
Discovery Institute, Auckland University of Technology, New Zealand, 2003.
Available at
http://www.aut.ac.nz/resources/research/research_institutes/kedri/downloads/pdf/datamin
ing2003.pdf. Accessed August 2006.

Guarino, N. and Giaretta, P., “Ontologies and Knowledge Bases: Towards a
Terminological Clarification,” in Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing, edited by Mars, N., Amsterdam: IOS Press, 1995.

Hall, W. and Farrell, J., “Activity-Based Mission Planning and Plan Management for
Autonomous Vehicles,” Proceedings of the 1994 Symposium on Autonomous Underwater
Vehicle Technology, Cambridge, MA, July 1994.

Halpin, T. A., “Object Role Modeling: an Overview,” Microsoft Corporation White
Paper, 2001. Available at http://www.orm.net/pdf/ORMwhitePaper.pdf. Accessed
August 2006.

Harold, E. R. and Means, S. W., XML in a Nutshell, Second Edition, O’Reilly &
Associates, 2002.

321

Hawkins, D. L. and Van Leuvan, B. C., An XML-Based Mission Command Language for
Autonomous Underwater Vehicles, Master’s Thesis, Department of Information Sciences,
Naval Postgraduate School, Monterey, California, June 2003. Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/theses. Accessed
August 2006.

Healey, A. J., Marco, D. B., and McGhee, R. B., “Autonomous Underwater Vehicle
Control coordination Using a Tri-Level Hybrid Software Architecture,” Proceedings of
the IEEE Robotics and Automation Conference, Minneapolis, MI, 1996. Available at
http://web.nps.navy.mil/~me/healey/papers/fin.pdf. Accessed August 2006.

Holman, K. G., Definitive XSLT and XPath, Prentice-Hall PTR, 2002.

Hopcroft, J., Motwani, R., and Ullman, J., Introduction to Automata Theory, Languages,
and Computation, Second Edition, Addison-Wesley, 2001.

Hudak, P., Courtney, A., Nillson, H., and Peterson, J., “Arrows, Robots, and Functional
Programming,” Summer School on Advanced Functional Programming 2002, Oxford
University, 2003.

Hudson, A. D., “An Introduction to the Xj3D Toolkit,” Proceedings of the 9th
International Conference on 3D Web Technology, Monterey, CA, April 2004.

Hunter, D., Cagle, K., Gibbons, D., Ozu, N., Pinnock, J., and Spencer, P., Beginning
XML, Third Edition, Wrox Press Ltd., 2004.

Hydroid, Inc., Technical Manual Operations and Maintenance Instructions, REMUS
Remote Environmental Measuring Units, 2001.

Institute of Electrical and Electronics Engineers (IEEE) Standard 1278.1-1995, Standard
for Distributed Interactive Simulation (DIS) Application Protocols, 1995.

International Maritime Organization (IMO) and International Civil Aviation Organization
(ICAO), International Aeronautical and Maritime Search and Rescue Manual, London,
England, 1998.

International Organization for Standardization (ISO) / International Electrotechnical
Commission (IEC) International Specification 19775:200x, Extensible 3D (X3D)
International Specification, 2004. Available at
http://www.web3d.org/x3d/specifications/#x3d. Accessed August 2006.

International Telecommunication Union (ITU), Information Technology—Generic
Applications of ASN.1—Fast Infoset, Recommended Standard X.891, May 2005.

322

Jarrar, M., Demey, J. and Meersman, R., “On Using Conceptual Data Modeling for
Ontology Engineering,” Journal on Data Semantics (Special Issue on Best Papers from
the ER, ODBASE, and COOPIS 2002 Conferences), volume 2800, October 2003.
Available at http://www.jarrar.info/publications/default.htm. Accessed August 2006.

Joint Architecture for Unmanned Systems (JAUS) Working Group, JAUS Domain
Model, Volume 1, Version 3.1, 9 April 2004. Available at
http://www.jauswg.org/baseline/insarchive.html. Accessed August 2006.

Joint Architecture for Unmanned Systems Working Group, JAUS Reference Architecture
Specification, Volume II, Part 1, Architecture Framework, Version 3.2, 13 August 2004.
Available at http://www.jauswg.org/baseline/insarchive.html. Accessed August 2006.

Joint Architecture for Unmanned Systems Working Group, JAUS Reference Architecture
Specification, Volume II, Part 2, Message Definition, Version 3.2, 13 August 2004.
Available at http://www.jauswg.org/baseline/insarchive.html. Accessed August 2006.

Joint Architecture for Unmanned Systems Working Group, JAUS Reference Architecture
Specification, Volume II, Part 3, Message Set, Version 3.2, 13 August 2004. Available at
http://www.jauswg.org/baseline/insarchive.html. Accessed August 2006.

Joint Architecture for Unmanned Systems Working Group, Unmanned Systems Common
Service Specification, Draft Version 1.02, 2006.

Kalinichenko, L., Missikoff, M., Schiapelli, F. and Skvortsov, N., “Ontological
Modeling,” Proceedings of the 5th Russian Conference on Digital Libraries, St.
Petersburg, Russia, 2003. Available at
http://synthesis.ipi.ac.ru/synthesis/publications/ontomodeling/ontomodeling.pdf.
Accessed August 2006.

Kay, M., XSLT Programmer’s Reference, Second Edition, Wiley Publishing, 2003.

Komerska, R., Blidberg, D. R., Chappell, S. G., and Peng, L., “Progress in the
Development and Evaluation of a Standard AUV Command and Monitoring Language,”
Proceedings of the 11th International Symposium on Unmanned Untethered Submersible
Technology, Durham, NH, August 1999.

Komerska, R., Chappell, S. G., Peng, L. and Blidberg, D. R., “Generic Behaviors as an
Interface for a Standard AUV Command & Monitoring Language, Working Draft
Version A3,” Autonomous Undersea Systems Institute, 3 September 1999.

Komerska, R. J., “A Proposed Standard Language for AUV Monitoring & Control,
Version 2.8,” Autonomous Undersea Systems Institute Technical Report TR-0509-01,
September 2005.

323

Kwak, S. H., McGhee, R. B., and Bihari, T. E., “Rational Behavior Model: A Tri-Level
Multiple Paradigm Architecture for Robot Vehicle Control Software,” Naval
Postgraduate School Technical Report NPSCS-92-003, March 1992.

Lee, C. S., NPS AUV Workbench: Collaborative Environment for Autonomous
Underwater Vehicles (AUV) Mission Planning and 3D Visualization, Master’s Thesis,
Department of Computer Science, Naval Postgraduate School, Monterey, California,
March 2004. Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/theses. Accessed
August 2006.

Lewis, A. S. and Weiss, L. G., “Intelligent Autonomy and Performance for Coordinated
Unmanned Vehicles,” Proceedings of the National Institute of Standards Technology
Performance Metrics for Intelligent Systems Workshop, Gaithersburg, MD, August 2004.
Available at
http://www.isd.mel.nist.gov/research_areas/research_engineering/Performance_Metrics/P
erMIS_2004/Proceedings/Lewis.pdf. Accessed August 2006.

Luger, G. F., Artificial Intelligence: Structures and Strategies for Complex Problem
Solving, Fourth Edition, Addison-Wesley, 2002.

Manley, J., “Multiple AUV Missions in the National Oceanic and Atmospheric
Administration,” Proceedings of the 2004 IEEE/OES Autonomous Underwater Vehicles
Symposium, Sebasco, Maine, June 2004.

Marco, D., “Procedure to Run Missions with the ARIES,” Naval Postgraduate School
Center for Autonomous Underwater Vehicle Research internal document, September
2001.

Marr, W. J., Acoustic Based Tactical Control of Underwater Vehicles, Ph.D. Thesis,
Department of Mechanical Engineering, Naval Postgraduate School, Monterey,
California, June 2003. Available at
http://www.cs.nps.navy.mil/research/auv/theses/Marr/BillMarr%20Dissertation.pdf.
Accessed August 2006.

Means, W. S. and Bodie, M. A., The Book of SAX, The Simple API for XML, No Starch
Press, 2002.

McGhee, R. B., Bachmann E. R. and Zyda, M. J., “Rigid Body Dynamics, Inertial
Reference Frames, and Graphics Coordinate Systems: A Resolution of Conflicting
Conventions and Terminology,” Naval Postgraduate School Technical Report NPS-MV-
01-002, November 2000.

324

McGregor, D., Brutzman, D., Armold, A., and Blais, C., “DIS-XML: Moving DIS to
Open Data Exchange Standards,” Proceedings of the Simulation Interoperability
Standards Organization (SISO) Spring 2006 Simulation Interoperability Workshop,
Huntsville, AL, April 2006.

McLaughlin, B., Java & XML, O’Reilly and Associates, 2001.

McLaughlin, B., Java & XML Data Binding, O’Reilly and Associates, 2002.

McLoud, T. W. and Wu, C., “Multi-Vehicle Mission Control System for Teams of
Heterogeneous Unmanned Vehicles,” 72nd Military Operations Research Society
Symposium, Unmanned Systems Working Group Presentation, Monterey, California,
June 2004.

Mendenhall, W., Wackerly, D. and Scheaffer, R., Mathematical Statistics with
Applications, Fifth Edition, PWS-Kent Publishing, 2001.

Mitchell, T. M., Machine Learning, WCB/McGraw Hill, 1997.

Montgomery, D. C. and Runger, G. C., Applied Statistics and Probability for Engineers,
Third Edition, John Wiley and Sons, 2003.

Multilateral Interoperability Programme (MIP), The Joint C3 Information Exchange Data
Model (JC3IEDM Main), Edition 3.0, Greding Germany, 9 December 2006.

Multilateral Interoperability Programme, Overview of the Joint C3 Information Exchange
Data Model (JC3IEDM) (JC3IEDM Overview), Edition 3.0, Greding Germany, 9
December 2005.

Mupparapu, S. S., Chappell, S. G., Komerska, R. J., Blidberg, R. D., Nitzel, R., Benton,
C., Popa, D. O., and Sanderson, A. C., “Autonomous Systems Monitoring and Control—
An AUV Fleet Controller,” Proceedings of the 2004 IEEE/OES Autonomous Underwater
Vehicles Symposium, June 2004.

National Academy of Sciences (NAS) Naval Studies Board, Autonomous Vehicles in
Support of Naval Operations, The National Academies Press, 2005.

Naval Oceanographic Office (NAVO), “Notes on Seahorse Mission Orders File Format
and Syntax,” Naval Oceanographic Office internal document, 2004.

Neushul, J. D., Interoperability, Data Control and Battlespace Visualization Using XML,
XSLT, and X3D, Master’s Thesis, Department of Computer Science, Naval Postgraduate
School, Monterey, California, September 2003.

325

Nicholson, J., Autonomous Optimal Rendezvous of Underwater Vehicles, PhD Thesis,
Department of Mechanical Engineering, Naval Postgraduate School, Monterey,
California, September 2004. Available at Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/dissertations.
Accessed August 2006.

Object Management Group (OMG), Unified Modeling Language (UML) 2.0
Superstructure Specification, August 2005. Available at
http://www.omg.org/cgi-bin/doc?formal/05-07-04.pdf. Accessed August 2006.

Open Geospatial Consortium, Inc. (OGC), OpenGIS Sensor Model Language
(SensorML) Implementation Specification, edited by Botts, M., February 2006.
Available at http://vast.nsstc.uah.edu/SensorML/docs/OGC-05-086r2_SensorML.doc.
Accessed August 2006.

Open Inventor Architecture Group (OIAG), Open Inventor C++ Reference Manual,
Addison Wesley Publishing, 1994.

QNX Software Systems (QNX), QNX Momentics Development Suite, 2005. Available
at http://www.qnx.com/products/rtos/index.html. Accessed August 2006.

Peterson, C. A. and Head, M. E. M., “Seahorses and Submarines,” Undersea Warfare
Magazine, Volume 5, Number 1, Fall 2002. Available at
http://www.navy.mil/palib/cno/n87/usw/issue_16/seahorses_and_submarines.html.
Accessed August 2006.

Phoha, S. and Schmiedekamp, M., “Robotalk: A Common Control Language for
Distributed Control of Dynamically Networked Autonomous Devices,” IEEE
Transactions on Parallel and Distributed Systems, 16 February 2004.

Ramakrishnan, R. and Gehrke, J., Database Management Systems, Third Edition,
McGraw Hill, 2003.

Rew, R., Davis, G., Emmerson, S. and Davies, H., The Network Common Data Form
Users’ Guide, Data Model, Programming Interface, and Format for Self-Describing,
Portable Data, NetCDF Version 3.6.1, Unidata Program Center, May 2005.

Ricard, M. and Kolitz, S., “The ADEPT Framework for Intelligent Autonomy,”
Intelligent Systems for Aeronautics Workshop, Brussels, Belgium, May 2002.

Rosenblatt, J., “The Distributed Architecture for Mobile Navigation,” Journal of
Experimental and Theoretical Artificial Intelligence, Volume 9, Number 2/3, April-
September, 1997.

Russell, S. and Norvig, P., Artificial Intelligence, a Modern Approach, Second Edition,
Prentice Hall, 2003.

326

Serin, E., Design and Test of the Cross-Format Schema Protocol (XFSP) for Networked
Virtual Environments, Master’s Thesis, Department of Computer Science, Naval
Postgraduate School, Monterey, California, March 2003. Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/theses. Accessed
August 2006.

Simmons, R., “NSCT ONE and EOD Small UUV Acquisition Programs,” ONR Joint
Review of Technology Applicable to Mine Countermeasures and Associated Missions,
Panama City, Florida, February 2004.

Spyns, P., Meersman, R., and Jarrar, M., “Data Modeling Versus Ontology Engineering,”
Association for Computing Machinery (ACM) Special Interest Group Management of
Data (SIGMOD) Record, Special Section on Semantic Web and Data Management,
Volume 31, number 4, December 2002.

Stentz, T., “Carnegie Mellon University Technology for Mission-Reconfigurable
Unmanned Undersea Vehicle (MRUUV), Current project status brief at the Naval
Undersea Warfare Center,” Newport, RI, 28 July 2004.

Stevens, B. L. and Lewis F. L., Aircraft Control and Simulation, Second Edition, John
Wiley and Sons, 2003.

Stokey, R. P., Interoperable Command Set for Multiple Vehicles (Compact Control
Language), ONR Joint Review of Technology Applicable to Mine Countermeasures and
Associated Missions, Panama City, Florida, February 2004.

Stokey, R. P., “A Compact Control Language for Autonomous Underwater Vehicles,”
Woods Hole Oceanographic Institution, April 2005. Available at
http://acomms.whoi.edu/40x%20Specifications/401100%20Compact%20Control%20Lan
guage/CCL%20April%202005%20Public%20Release%201.0.pdf. Accessed August
2006.

Stokey, R. P., Freitag, L. E. and Grund, M. E., “A Compact Control Language for AUV
Acoustic Communication,” Proceedings of the Oceans ’05, Europe Conference, June
2005. Available at
http://acomms.whoi.edu/40x%20Specifications/401100%20Compact%20Control%20Lan
guage/CCL_OceansEurope05-Final.pdf. Accessed August 2006.

St. Peter, M. and LaPointe K. M., “Swarming Mobile Searchers,” 72nd Military
Operations Research Society Symposium, Unmanned Systems Working Group
Presentation, Monterey, California, June 2004.

Sun Microsystems, Inc., Java Architecture for XML Binding (JAXB) Version 1.0 Online
Users Guide, 2005. Available at
http://java.sun.com/webservices/jaxb/users-guide/jaxb-using.html. Accessed August
2006.

327

Tidwell, D., XSLT, Mastering XML Transformations, O’Reilly and Associates, 2001.

Turner, E. H. and Chappell, S. G., “Conceptual Communications for Multi-Vehicle
Systems,” University of New Hampshire (UNH) Technical Report #95-08, May 1995.

Turner, R. M., Blidberg, D. R., Chappell, S. G. and Jalbert, J. C., “Generic Behaviors: an
Approach to Modularity in Intelligent Systems Control,” Proceedings of the 8th
International Symposium on Unmanned and Untethered Submersible Technology,
Durham, NH, 1993.

Turner, R. M. and Turner, E. H., “Self-Organization and Reorganization of Multi-AUV
Systems: CoDA Project Overview,” Proceedings of the 2004 IEEE/OES Autonomous
Underwater Vehicles Symposium, Sebasco, Maine, June 2004.

Vaughan, R., Gerkey, B., and Howard, A., “On Device Abstractions for Portable,
Reusable Robot Code,” Proceedings of the 2003 IEEE/RJS International Conference on
Intelligent Robots and Systems, Las Vegas, Nevada, October 2003.

Weekley, J., Brutzman, D., Healey, A., Davis, D., and Lee, D., “AUV Workbench:
Integrated 3D for Interoperable Mission Rehearsal, Reality and Replay,” Proceedings of
the Mine Warfare Association Australian-American Mine Warfare Conference, Canberra,
Australia, February 2004. Available at
http://xmsf.cvs.sourceforge.net/xmsf/AuvWorkbench/documentation/papers. Accessed
August 2006.

Werger, B., “Ayllu: Distributed Port-Arbitrated Behavior-Based Control,” Proceedings
of the 5th International Symposium on Distributed Autonomous Robotic Systems,
Knoxville, Tennessee, October 2000.

World Wide Web Consortium, XSL Transformations (XSLT) Version 1.0 Recommended
Specification, edited by Clark, J., October 2001. Available at
http://www.w3.org/TR/2001/REC-xsl-20011015. Accessed August 2006.

World Wide Web Consortium (W3C), Extensible Markup Language (XML) 1.0 (Third
Edition) Recommended Specification, edited by Bray, T., Paoli, J., Sperberg-McQueen
C. M., Maler, E., and Yergeau, F., February 2004. Available at
http://www.w3.org/TR/REC-xml. Accessed August 2006.

World Wide Web Consortium, XML Schema Part 1: Structures Second Edition
Recommended Specification, edited by Biron, Thompson, H. S., Beech, D., Maloney, M.
and Mendelsohn, N., October 2004. Available at http://www.w3.org/TR/xmlschema-1.
Accessed August 2006.

World Wide Web Consortium, XML Schema Part 2: Datatypes Second Edition
Recommended Specification, edited by Biron, P. V. and Malhotra, A., October 2004.
Available at http://www.w3.org/TR/xmlschema-2. Accessed August 2006.

328

World Wide Web Consortium, Document Object Model Level 3 Core Specification
Recommendation, edited by Le Hors, A., Le Hegaret, P., Wood, L., Nicol, G., Robie, J.,
Champion, M. and Byrne, S., April 2004. Available at http://www.w3.org/DOM.
Accessed August 2006.

World Wide Web Consortium, OWL Web Ontology Language Overview
Recommendation, edited by McGuinness, D. L. and van Harmelen, F., February 2004.
Available at http://www.w3.org/TR/owl-features. Accessed August 2006.

World Wide Web Consortium, XML Binary Characterization, edited by Goldman, O. and
Lenkov, D., March 2005. Available at http://www.w3.org/TR/xbc-characterization.
Accessed August 2006.

Yang, L., Kreamer, W., Adams, M., Carr, F., Guerra, C., Page, L., McConley, M., Hall,
W. and Falcone, C., “Hierarchical Planning for Large Numbers of Unmanned Vehicles,”
The Draper Technology Digest, Volume 9, Draper Laboratory, 2005.

Yumetech, Inc., “Xj3D Picking Extensions,” Proposed extension to the X3D
specification, 2004. Available at http://www.xj3d.org/extensions/picking.html.
Accessed August 2006.

329

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Associate Professor Don Brutzman
Department of Undersea Warfare
Naval Postgraduate School
Monterey, CA

4. Professor Neil Rowe
Department of Computer Science
Naval Postgraduate School
Monterey, CA

5. Professor Robert McGhee
Department of Computer Science
Naval Postgraduate School
Monterey, CA

6. Associate Professor Christian Darken
Department of Computer Science
Naval Postgraduate School
Monterey, CA

7. Distinguished Professor Anthony Healey
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA

8. Assistant Professor Kevin Squire

Department of Computer Science
Naval Postgraduate School
Monterey, CA

9. Dr. Kwang Song
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA

330

10. Mr. Douglas Horner
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA

11. Mr. Sean Krageland
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA

12. Mr. Curt Blais
MOVES Institute
Naval Postgraduate School
Monterey, CA

13. CAPT Dan Gahagan, USN
Naval Research Laboratory
Arlington, VA

14. CAPT Dennis Sorensen, USN
Office of Naval Research
Arlington, VA

15. Dr. Thomas Swean
Office of Naval Research
Arlington, VA

16. Dr. Thomas Curtin

Office of Naval Research
Arlington, VA

17. Mr. John Moore
Navy Modeling and Simulation Office
Arlington, VA

18. Mr. D. Richard Blidberg
Autonomous Undersea Systems Institute
Durham, NH

19. Mr. Steven Chappell
Autonomous Undersea Systems Institute
Durhman, NH

20. Mr. Rick Komerska
Autonomous Undersea Systems Institute
Durhman, NH

331

21. Mr. Peter Flynn

Naval Research Laboratory,
Stennis Space Center, MS

